Abstract:Data poisoning attacks on clustering algorithms have received limited attention, with existing methods struggling to scale efficiently as dataset sizes and feature counts increase. These attacks typically require re-clustering the entire dataset multiple times to generate predictions and assess the attacker's objectives, significantly hindering their scalability. This paper addresses these limitations by proposing Sonic, a novel genetic data poisoning attack that leverages incremental and scalable clustering algorithms, e.g., FISHDBC, as surrogates to accelerate poisoning attacks against graph-based and density-based clustering methods, such as HDBSCAN. We empirically demonstrate the effectiveness and efficiency of Sonic in poisoning the target clustering algorithms. We then conduct a comprehensive analysis of the factors affecting the scalability and transferability of poisoning attacks against clustering algorithms, and we conclude by examining the robustness of hyperparameters in our attack strategy Sonic.
Abstract:FISHDBC is a flexible, incremental, scalable, and hierarchical density-based clustering algorithm. It is flexible because it empowers users to work on arbitrary data, skipping the feature extraction step that usually transforms raw data in numeric arrays letting users define an arbitrary distance function instead. It is incremental and scalable: it avoids the $\mathcal O(n^2)$ performance of other approaches in non-metric spaces and requires only lightweight computation to update the clustering when few items are added. It is hierarchical: it produces a "flat" clustering which can be expanded to a tree structure, so that users can group and/or divide clusters in sub- or super-clusters when data exploration requires so. It is density-based and approximates HDBSCAN*, an evolution of DBSCAN.