Abstract:In this paper, we study the problem of estimator selection and hyper-parameter tuning in off-policy evaluation. Although cross-validation is the most popular method for model selection in supervised learning, off-policy evaluation relies mostly on theory-based approaches, which provide only limited guidance to practitioners. We show how to use cross-validation for off-policy evaluation. This challenges a popular belief that cross-validation in off-policy evaluation is not feasible. We evaluate our method empirically and show that it addresses a variety of use cases.
Abstract:Off-policy evaluation (OPE) methods allow us to compute the expected reward of a policy by using the logged data collected by a different policy. OPE is a viable alternative to running expensive online A/B tests: it can speed up the development of new policies, and reduces the risk of exposing customers to suboptimal treatments. However, when the number of actions is large, or certain actions are under-explored by the logging policy, existing estimators based on inverse-propensity scoring (IPS) can have a high or even infinite variance. Saito and Joachims (arXiv:2202.06317v2 [cs.LG]) propose marginalized IPS (MIPS) that uses action embeddings instead, which reduces the variance of IPS in large action spaces. MIPS assumes that good action embeddings can be defined by the practitioner, which is difficult to do in many real-world applications. In this work, we explore learning action embeddings from logged data. In particular, we use intermediate outputs of a trained reward model to define action embeddings for MIPS. This approach extends MIPS to more applications, and in our experiments improves upon MIPS with pre-defined embeddings, as well as standard baselines, both on synthetic and real-world data. Our method does not make assumptions about the reward model class, and supports using additional action information to further improve the estimates. The proposed approach presents an appealing alternative to DR for combining the low variance of DM with the low bias of IPS.
Abstract:Off-policy learning is a framework for optimizing policies without deploying them, using data collected by another policy. In recommender systems, this is especially challenging due to the imbalance in logged data: some items are recommended and thus logged much more frequently than others. This is further perpetuated when recommending a list of items, as the action space is combinatorial. To address this challenge, we study pessimistic off-policy optimization for learning to rank. The key idea is to compute lower confidence bounds on parameters of click models and then return the list with the highest pessimistic estimate of its value. This approach is computationally efficient and we analyze it. We study its Bayesian and frequentist variants, and overcome the limitation of unknown prior by incorporating empirical Bayes. To show the empirical effectiveness of our approach, we compare it to off-policy optimizers that use inverse propensity scores or neglect uncertainty. Our approach outperforms all baselines, is robust, and is also general.