Abstract:We demonstrate the feasibility of the radar-based measurement of body movements in scenarios involving multiple students using a pair of 79-GHz millimeter-wave radar systems with array antennas. We quantify the body motion using the Doppler frequency calculated from radar echoes. The measurement accuracy is evaluated for two experimental scenarios, namely university students in an office and elementary school students in a classroom. The body movements measured using the two radar systems are compared to evaluate the repeatability and angle dependency of the measurement. Moreover, in the first scenario, we compare the radar-estimated body movement with subjective evaluation scores provided by two evaluators. In the first scenario, the coefficient of correlation between the radar-estimated body movement and the subjective evaluation score is 0.73 on average, with a maximum value of 0.97; in the second scenario, the average correlation coefficient of body movements measured using two radar systems is as high as 0.78. These results indicate that the proposed approach can be used to monitor the body movements of multiple students in realistic scenarios.
Abstract:We propose a method to measure the respiration of a rhesus monkey using a millimeter-wave radar system with an antenna array. Unlike humans, small animals are generally restless and hyperactive in nature, and suppression of their body motion components is thus necessary to realize accurate respiratory measurements. The proposed method detects and suppresses nonperiodic body motion components while also combining and emphasizing the periodic components from multiple echoes acquired from the target. Results indicate that the proposed method can measure respiration rate of the target monkey accurately, even with frequent body movements.