Abstract:A brain tumor consists of cells showing abnormal brain growth. The area of the brain tumor significantly affects choosing the type of treatment and following the course of the disease during the treatment. At the same time, pictures of Brain MRIs are accompanied by noise. Eliminating existing noises can significantly impact the better segmentation and diagnosis of brain tumors. In this work, we have tried using the analysis of eigenvalues. We have used the MSVD algorithm, reducing the image noise and then using the deep neural network to segment the tumor in the images. The proposed method's accuracy was increased by 2.4% compared to using the original images. With Using the MSVD method, convergence speed has also increased, showing the proposed method's effectiveness
Abstract:The past decade has observed a great advancement in AI with deep learning-based models being deployed in diverse scenarios including safety-critical applications. As these AI systems become deeply embedded in our societal infrastructure, the repercussions of their decisions and actions have significant consequences, making the ethical implications of AI deployment highly relevant and important. The ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact. These principles together form the foundations of ethical AI considerations that concern every stakeholder in the AI system lifecycle. In light of the present ethical and future x-risk concerns, governments have shown increasing interest in establishing guidelines for the ethical deployment of AI. This work unifies the current and future ethical concerns of deploying AI into society. While we acknowledge and appreciate the technical surveys for each of the ethical principles concerned, in this paper, we aim to provide a comprehensive overview that not only addresses each principle from a technical point of view but also discusses them from a social perspective.