Abstract:Foundational models have emerged as a powerful paradigm in deep learning field, leveraging their capacity to learn robust representations from large-scale datasets and effectively to diverse downstream applications such as classification. In this paper, we present Astromer 2 a foundational model specifically designed for extracting light curve embeddings. We introduce Astromer 2 as an enhanced iteration of our self-supervised model for light curve analysis. This paper highlights the advantages of its pre-trained embeddings, compares its performance with that of its predecessor, Astromer 1, and provides a detailed empirical analysis of its capabilities, offering deeper insights into the model's representations. Astromer 2 is pretrained on 1.5 million single-band light curves from the MACHO survey using a self-supervised learning task that predicts randomly masked observations within sequences. Fine-tuning on a smaller labeled dataset allows us to assess its performance in classification tasks. The quality of the embeddings is measured by the F1 score of an MLP classifier trained on Astromer-generated embeddings. Our results demonstrate that Astromer 2 significantly outperforms Astromer 1 across all evaluated scenarios, including limited datasets of 20, 100, and 500 samples per class. The use of weighted per-sample embeddings, which integrate intermediate representations from Astromer's attention blocks, is particularly impactful. Notably, Astromer 2 achieves a 15% improvement in F1 score on the ATLAS dataset compared to prior models, showcasing robust generalization to new datasets. This enhanced performance, especially with minimal labeled data, underscores the potential of Astromer 2 for more efficient and scalable light curve analysis.
Abstract:With the increasing volume of astronomical data generated by modern survey telescopes, automated pipelines and machine learning techniques have become crucial for analyzing and extracting knowledge from these datasets. Anomaly detection, i.e. the task of identifying irregular or unexpected patterns in the data, is a complex challenge in astronomy. In this paper, we propose Multi-Class Deep Support Vector Data Description (MCDSVDD), an extension of the state-of-the-art anomaly detection algorithm One-Class Deep SVDD, specifically designed to handle different inlier categories with distinct data distributions. MCDSVDD uses a neural network to map the data into hyperspheres, where each hypersphere represents a specific inlier category. The distance of each sample from the centers of these hyperspheres determines the anomaly score. We evaluate the effectiveness of MCDSVDD by comparing its performance with several anomaly detection algorithms on a large dataset of astronomical light-curves obtained from the Zwicky Transient Facility. Our results demonstrate the efficacy of MCDSVDD in detecting anomalous sources while leveraging the presence of different inlier categories. The code and the data needed to reproduce our results are publicly available at https://github.com/mperezcarrasco/AnomalyALeRCE.