TSP, IP Paris, SAMOVAR
Abstract:Convolutional neural networks (CNNs) have been pivotal in various 2D image analysis tasks, including computer vision, image indexing and retrieval or semantic classification. Extending CNNs to 3D data such as point clouds and 3D meshes raises significant challenges since the very basic convolution and pooling operators need to be completely re-visited and re-defined in an appropriate manner to tackle irregular connectivity issues. In this paper, we introduce MeshConv3D, a 3D mesh-dedicated methodology integrating specialized convolution and face collapse-based pooling operators. MeshConv3D operates directly on meshes of arbitrary topology, without any need of prior re-meshing/conversion techniques. In order to validate our approach, we have considered a semantic classification task. The experimental results obtained on three distinct benchmark datasets show that the proposed approach makes it possible to achieve equivalent or superior classification results, while minimizing the related memory footprint and computational load.
Abstract:The advent of sparsity inducing techniques in neural networks has been of a great help in the last few years. Indeed, those methods allowed to find lighter and faster networks, able to perform more efficiently in resource-constrained environment such as mobile devices or highly requested servers. Such a sparsity is generally imposed on the weights of neural networks, reducing the footprint of the architecture. In this work, we go one step further by imposing sparsity jointly on the weights and on the input data. This can be achieved following a three-step process: 1) impose a certain structured sparsity on the weights of the network; 2) track back input features corresponding to zeroed blocks of weight; 3) remove useless weights and input features and retrain the network. Performing pruning both on the network and on input data not only allows for extreme reduction in terms of parameters and operations but can also serve as an interpretation process. Indeed, with the help of data pruning, we now have information about which input feature is useful for the network to keep its performance. Experiments conducted on a variety of architectures and datasets: MLP validated on MNIST, CIFAR10/100 and ConvNets (VGG16 and ResNet18), validated on CIFAR10/100 and CALTECH101 respectively, show that it is possible to achieve additional gains in terms of total parameters and in FLOPs by performing pruning on input data, while also increasing accuracy.
Abstract:Neural network pruning is a widely used strategy for reducing model storage and computing requirements. It allows to lower the complexity of the network by introducing sparsity in the weights. Because taking advantage of sparse matrices is still challenging, pruning is often performed in a structured way, i.e. removing entire convolution filters in the case of ConvNets, according to a chosen pruning criteria. Common pruning criteria, such as l1-norm or movement, usually do not consider the individual utility of filters, which may lead to: (1) the removal of filters exhibiting rare, thus important and discriminative behaviour, and (2) the retaining of filters with redundant information. In this paper, we present a technique solving those two issues, and which can be appended to any pruning criteria. This technique ensures that the criteria of selection focuses on redundant filters, while retaining the rare ones, thus maximizing the variety of remaining filters. The experimental results, carried out on different datasets (CIFAR-10, CIFAR-100 and CALTECH-101) and using different architectures (VGG-16 and ResNet-18) demonstrate that it is possible to achieve similar sparsity levels while maintaining a higher performance when appending our filter selection technique to pruning criteria. Moreover, we assess the quality of the found sparse sub-networks by applying the Lottery Ticket Hypothesis and find that the addition of our method allows to discover better performing tickets in most cases
Abstract:In recent years, deep neural networks have known a wide success in various application domains. However, they require important computational and memory resources, which severely hinders their deployment, notably on mobile devices or for real-time applications. Neural networks usually involve a large number of parameters, which correspond to the weights of the network. Such parameters, obtained with the help of a training process, are determinant for the performance of the network. However, they are also highly redundant. The pruning methods notably attempt to reduce the size of the parameter set, by identifying and removing the irrelevant weights. In this paper, we examine the impact of the training strategy on the pruning efficiency. Two training modalities are considered and compared: (1) fine-tuned and (2) from scratch. The experimental results obtained on four datasets (CIFAR10, CIFAR100, SVHN and Caltech101) and for two different CNNs (VGG16 and MobileNet) demonstrate that a network that has been pre-trained on a large corpus (e.g. ImageNet) and then fine-tuned on a particular dataset can be pruned much more efficiently (up to 80% of parameter reduction) than the same network trained from scratch.
Abstract:Introducing sparsity in a neural network has been an efficient way to reduce its complexity while keeping its performance almost intact. Most of the time, sparsity is introduced using a three-stage pipeline: 1) train the model to convergence, 2) prune the model according to some criterion, 3) fine-tune the pruned model to recover performance. The last two steps are often performed iteratively, leading to reasonable results but also to a time-consuming and complex process. In our work, we propose to get rid of the first step of the pipeline and to combine the two other steps in a single pruning-training cycle, allowing the model to jointly learn for the optimal weights while being pruned. We do this by introducing a novel pruning schedule, named One-Cycle Pruning, which starts pruning from the beginning of the training, and until its very end. Adopting such a schedule not only leads to better performing pruned models but also drastically reduces the training budget required to prune a model. Experiments are conducted on a variety of architectures (VGG-16 and ResNet-18) and datasets (CIFAR-10, CIFAR-100 and Caltech-101), and for relatively high sparsity values (80%, 90%, 95% of weights removed). Our results show that One-Cycle Pruning consistently outperforms commonly used pruning schedules such as One-Shot Pruning, Iterative Pruning and Automated Gradual Pruning, on a fixed training budget.
Abstract:In this paper, we propose a new end-to-end methodology to optimize the energy performance and the comfort, air quality and hygiene of large buildings. A metamodel based on a Transformer network is introduced and trained using a dataset sampled with a simulation program. Then, a few physical parameters and the building management system settings of this metamodel are calibrated using the CMA-ES optimization algorithm and real data obtained from sensors. Finally, the optimal settings to minimize the energy loads while maintaining a target thermal comfort and air quality are obtained using a multi-objective optimization procedure. The numerical experiments illustrate how this metamodel ensures a significant gain in energy efficiency while being computationally much more appealing than models requiring a huge number of physical parameters to be estimated.