Abstract:Scientific machine learning (SciML) methods such as physics-informed neural networks (PINNs) are used to estimate parameters of interest from governing equations and small quantities of data. However, there has been little work in assessing how well PINNs perform for inverse problems across wide ranges of governing equations across the mathematical sciences. We present a new and challenging benchmark problem for inverse PINNs based on a parametric sweep of the 2D Burgers' equation with rotational flow. We show that a novel strategy that alternates between first- and second-order optimization proves superior to typical first-order strategies for estimating parameters. In addition, we propose a novel data-driven method to characterize PINN effectiveness in the inverse setting. PINNs' physics-informed regularization enables them to leverage small quantities of data more efficiently than the data-driven baseline. However, both PINNs and the baseline can fail to recover parameters for highly inviscid flows, motivating the need for further development of PINN methods.
Abstract:Despite the progress in deep learning networks, efficient learning at the edge (enabling adaptable, low-complexity machine learning solutions) remains a critical need for defense and commercial applications. We envision a pipeline to utilize large neuroimaging datasets, including maps of the brain which capture neuron and synapse connectivity, to improve machine learning approaches. We have pursued different approaches within this pipeline structure. First, as a demonstration of data-driven discovery, the team has developed a technique for discovery of repeated subcircuits, or motifs. These were incorporated into a neural architecture search approach to evolve network architectures. Second, we have conducted analysis of the heading direction circuit in the fruit fly, which performs fusion of visual and angular velocity features, to explore augmenting existing computational models with new insight. Our team discovered a novel pattern of connectivity, implemented a new model, and demonstrated sensor fusion on a robotic platform. Third, the team analyzed circuitry for memory formation in the fruit fly connectome, enabling the design of a novel generative replay approach. Finally, the team has begun analysis of connectivity in mammalian cortex to explore potential improvements to transformer networks. These constraints increased network robustness on the most challenging examples in the CIFAR-10-C computer vision robustness benchmark task, while reducing learnable attention parameters by over an order of magnitude. Taken together, these results demonstrate multiple potential approaches to utilize insight from neural systems for developing robust and efficient machine learning techniques.