Abstract:The universal approximation theorem states that a neural network with one hidden layer can approximate continuous functions on compact sets with any desired precision. This theorem supports using neural networks for various applications, including regression and classification tasks. Furthermore, it is valid for real-valued neural networks and some hypercomplex-valued neural networks such as complex-, quaternion-, tessarine-, and Clifford-valued neural networks. However, hypercomplex-valued neural networks are a type of vector-valued neural network defined on an algebra with additional algebraic or geometric properties. This paper extends the universal approximation theorem for a wide range of vector-valued neural networks, including hypercomplex-valued models as particular instances. Precisely, we introduce the concept of non-degenerate algebra and state the universal approximation theorem for neural networks defined on such algebras.
Abstract:This paper concerns the training of a single-layer morphological perceptron using disciplined convex-concave programming (DCCP). We introduce an algorithm referred to as K-DDCCP, which combines the existing single-layer morphological perceptron (SLMP) model proposed by Ritter and Urcid with the weighted disciplined convex-concave programming (WDCCP) algorithm by Charisopoulos and Maragos. The proposed training algorithm leverages the disciplined convex-concave procedure (DCCP) and formulates a non-convex optimization problem for binary classification. To tackle this problem, the constraints are expressed as differences of convex functions, enabling the application of the DCCP package. The experimental results confirm the effectiveness of the K-DDCCP algorithm in solving binary classification problems. Overall, this work contributes to the field of morphological neural networks by proposing an algorithm that extends the capabilities of the SLMP model.
Abstract:Objects' rigid motions in 3D space are described by rotations and translations of a highly-correlated set of points, each with associated $x,y,z$ coordinates that real-valued networks consider as separate entities, losing information. Previous works exploit quaternion algebra and their ability to model rotations in 3D space. However, these algebras do not properly encode translations, leading to sub-optimal performance in 3D learning tasks. To overcome these limitations, we employ a dual quaternion representation of rigid motions in the 3D space that jointly describes rotations and translations of point sets, processing each of the points as a single entity. Our approach is translation and rotation equivariant, so it does not suffer from shifts in the data and better learns object trajectories, as we validate in the experimental evaluations. Models endowed with this formulation outperform previous approaches in a human pose forecasting application, attesting to the effectiveness of the proposed dual quaternion formulation for rigid motions in 3D space.
Abstract:Despite the many successful applications of deep learning models for multidimensional signal and image processing, most traditional neural networks process data represented by (multidimensional) arrays of real numbers. The intercorrelation between feature channels is usually expected to be learned from the training data, requiring numerous parameters and careful training. In contrast, vector-valued neural networks are conceived to process arrays of vectors and naturally consider the intercorrelation between feature channels. Consequently, they usually have fewer parameters and often undergo more robust training than traditional neural networks. This paper aims to present a broad framework for vector-valued neural networks, referred to as V-nets. In this context, hypercomplex-valued neural networks are regarded as vector-valued models with additional algebraic properties. Furthermore, this paper explains the relationship between vector-valued and traditional neural networks. Precisely, a vector-valued neural network can be obtained by placing restrictions on a real-valued model to consider the intercorrelation between feature channels. Finally, we show how V-nets, including hypercomplex-valued neural networks, can be implemented in current deep-learning libraries as real-valued networks.
Abstract:Mathematical morphology is a theory concerned with non-linear operators for image processing and analysis. The underlying framework for mathematical morphology is a partially ordered set with well-defined supremum and infimum operations. Because vectors can be ordered in many ways, finding appropriate ordering schemes is a major challenge in mathematical morphology for vector-valued images, such as color and hyperspectral images. In this context, the irregularity issue plays a key role in designing effective morphological operators. Briefly, the irregularity follows from a disparity between the ordering scheme and a metric in the value set. Determining an ordering scheme using a metric provide reasonable approaches to vector-valued mathematical morphology. Because total orderings correspond to paths on the value space, one attempt to reduce the irregularity of morphological operators would be defining a total order based on the shortest length path. However, this paper shows that the total ordering associated with the shortest length path does not necessarily imply minimizing the irregularity.
Abstract:The universal approximation theorem asserts that a single hidden layer neural network approximates continuous functions with any desired precision on compact sets. As an existential result, the universal approximation theorem supports the use of neural networks for various applications, including regression and classification tasks. The universal approximation theorem is not limited to real-valued neural networks but also holds for complex, quaternion, tessarines, and Clifford-valued neural networks. This paper extends the universal approximation theorem for a broad class of hypercomplex-valued neural networks. Precisely, we first introduce the concept of non-degenerate hypercomplex algebra. Complex numbers, quaternions, and tessarines are examples of non-degenerate hypercomplex algebras. Then, we state the universal approximation theorem for hypercomplex-valued neural networks defined on a non-degenerate algebra.
Abstract:This paper features convolutional neural networks defined on hypercomplex algebras applied to classify lymphocytes in blood smear digital microscopic images. Such classification is helpful for the diagnosis of acute lymphoblast leukemia (ALL), a type of blood cancer. We perform the classification task using eight hypercomplex-valued convolutional neural networks (HvCNNs) along with real-valued convolutional networks. Our results show that HvCNNs perform better than the real-valued model, showcasing higher accuracy with a much smaller number of parameters. Moreover, we found that HvCNNs based on Clifford algebras processing HSV-encoded images attained the highest observed accuracies. Precisely, our HvCNN yielded an average accuracy rate of 96.6% using the ALL-IDB2 dataset with a 50% train-test split, a value extremely close to the state-of-the-art models but using a much simpler architecture with significantly fewer parameters.
Abstract:The field of neural networks has seen significant advances in recent years with the development of deep and convolutional neural networks. Although many of the current works address real-valued models, recent studies reveal that neural networks with hypercomplex-valued parameters can better capture, generalize, and represent the complexity of multidimensional data. This paper explores the quaternion-valued convolutional neural network application for a pattern recognition task from medicine, namely, the diagnosis of acute lymphoblastic leukemia. Precisely, we compare the performance of real-valued and quaternion-valued convolutional neural networks to classify lymphoblasts from the peripheral blood smear microscopic images. The quaternion-valued convolutional neural network achieved better or similar performance than its corresponding real-valued network but using only 34% of its parameters. This result confirms that quaternion algebra allows capturing and extracting information from a color image with fewer parameters.
Abstract:In this paper, we first address the dynamics of the elegant multi-valued quaternionic Hopfield neural network (MV-QHNN) proposed by Minemoto and collaborators. Contrary to what was expected, we show that the MV-QHNN, as well as one of its variation, does not always come to rest at an equilibrium state under the usual conditions. In fact, we provide simple examples in which the network yields a periodic sequence of quaternionic state vectors. Afterward, we turn our attention to the continuous-valued quaternionic Hopfield neural network (CV-QHNN), which can be derived from the MV-QHNN by means of a limit process. The CV-QHNN can be implemented more easily than the MV-QHNN model. Furthermore, the asynchronous CV-QHNN always settles down into an equilibrium state under the usual conditions. Theoretical issues are all illustrated by examples in this paper.
Abstract:This paper presents a hybrid morphological neural network for regression tasks called linear dilation-erosion regression ($\ell$-DER). In few words, an $\ell$-DER model is given by a convex combination of the composition of linear and elementary morphological operators. As a result, they yield continuous piecewise linear functions and, thus, are universal approximators. Apart from introducing the $\ell$-DER models, we present three approaches for training these models: one based on stochastic descent gradient and two based on the difference of convex programming problems. Finally, we evaluate the performance of the $\ell$-DER model using 14 regression tasks. Although the approach based on SDG revealed faster than the other two, the $\ell$-DER trained using a disciplined convex-concave programming problem outperformed the others in terms of the least mean absolute error score.