Abstract:Implicit Neural Representations (INRs) have peaked interest in recent years due to their ability to encode natural signals using neural networks. While INRs allow for useful applications such as interpolating new coordinates and signal compression, their black-box nature makes it difficult to modify them post-training. In this paper we explore the idea of editable INRs, and specifically focus on the widely used cropping operation. To this end, we present Local-Global SIRENs -- a novel INR architecture that supports cropping by design. Local-Global SIRENs are based on combining local and global feature extraction for signal encoding. What makes their design unique is the ability to effortlessly remove specific portions of an encoded signal, with a proportional weight decrease. This is achieved by eliminating the corresponding weights from the network, without the need for retraining. We further show how this architecture can be used to support the straightforward extension of previously encoded signals. Beyond signal editing, we examine how the Local-Global approach can accelerate training, enhance encoding of various signals, improve downstream performance, and be applied to modern INRs such as INCODE, highlighting its potential and flexibility. Code is available at https://github.com/maorash/Local-Global-INRs.
Abstract:Neural Representations have recently been shown to effectively reconstruct a wide range of signals from 3D meshes and shapes to images and videos. We show that, when adapted correctly, neural representations can be used to directly represent the weights of a pre-trained convolutional neural network, resulting in a Neural Representation for Neural Networks (NeRN). Inspired by coordinate inputs of previous neural representation methods, we assign a coordinate to each convolutional kernel in our network based on its position in the architecture, and optimize a predictor network to map coordinates to their corresponding weights. Similarly to the spatial smoothness of visual scenes, we show that incorporating a smoothness constraint over the original network's weights aids NeRN towards a better reconstruction. In addition, since slight perturbations in pre-trained model weights can result in a considerable accuracy loss, we employ techniques from the field of knowledge distillation to stabilize the learning process. We demonstrate the effectiveness of NeRN in reconstructing widely used architectures on CIFAR-10, CIFAR-100, and ImageNet. Finally, we present two applications using NeRN, demonstrating the capabilities of the learned representations.
Abstract:Convolutional Neural Networks (CNNs) are known for requiring extensive computational resources, and quantization is among the best and most common methods for compressing them. While aggressive quantization (i.e., less than 4-bits) performs well for classification, it may cause severe performance degradation in image-to-image tasks such as semantic segmentation and depth estimation. In this paper, we propose Wavelet Compressed Convolution (WCC) -- a novel approach for high-resolution activation maps compression integrated with point-wise convolutions, which are the main computational cost of modern architectures. To this end, we use an efficient and hardware-friendly Haar-wavelet transform, known for its effectiveness in image compression, and define the convolution on the compressed activation map. We experiment on various tasks, that benefit from high-resolution input, and by combining WCC with light quantization, we achieve compression rates equivalent to 1-4bit activation quantization with relatively small and much more graceful degradation in performance.