Abstract:As artificial intelligence (AI) systems are increasingly embedded in our lives, their presence leads to interactions that shape our behaviour, decision-making, and social interactions. Existing theoretical research has primarily focused on human-to-human interactions, overlooking the unique dynamics triggered by the presence of AI. In this paper, resorting to methods from evolutionary game theory, we study how different forms of AI influence the evolution of cooperation in a human population playing the one-shot Prisoner's Dilemma game in both well-mixed and structured populations. We found that Samaritan AI agents that help everyone unconditionally, including defectors, can promote higher levels of cooperation in humans than Discriminatory AI that only help those considered worthy/cooperative, especially in slow-moving societies where change is viewed with caution or resistance (small intensities of selection). Intuitively, in fast-moving societies (high intensities of selection), Discriminatory AIs promote higher levels of cooperation than Samaritan AIs.
Abstract:Closed-form, interpretable mathematical models have been instrumental for advancing our understanding of the world; with the data revolution, we may now be in a position to uncover new such models for many systems from physics to the social sciences. However, to deal with increasing amounts of data, we need "machine scientists" that are able to extract these models automatically from data. Here, we introduce a Bayesian machine scientist, which establishes the plausibility of models using explicit approximations to the exact marginal posterior over models and establishes its prior expectations about models by learning from a large empirical corpus of mathematical expressions. It explores the space of models using Markov chain Monte Carlo. We show that this approach uncovers accurate models for synthetic and real data and provides out-of-sample predictions that are more accurate than those of existing approaches and of other nonparametric methods.