Abstract:This study investigates machine learning algorithms to identify objective features for diagnosing food addiction (FA) and assessing confirmed symptoms (SC). Data were collected from 81 participants (mean age: 21.5 years, range: 18-61 years, women: 77.8%) whose FA and SC were measured using the Yale Food Addiction Scale (YFAS). Participants provided demographic and anthropometric data, completed the YFAS, the Zung Self-Rating Depression Scale, and the Dutch Eating Behavior Questionnaire, and wore an actimeter on the non-dominant wrist for a week to record motor activity. Analysis of the actimetric data identified significant statistical and entropy-based features that accurately predicted FA and SC using ML. The Matthews correlation coefficient (MCC) was the primary metric. Activity-related features were more effective for FA prediction (MCC=0.88) than rest-related features (MCC=0.68). For SC, activity segments yielded MCC=0.47, rest segments MCC=0.38, and their combination MCC=0.51. Significant correlations were also found between actimetric features related to FA, emotional, and restrained eating behaviors, supporting the model's validity. Our results support the concept of a human bionic suite composed of IoT devices and ML sensors, which implements health digital assistance with real-time monitoring and analysis of physiological indicators related to FA and SC.
Abstract:The study presents the concept of a computationally efficient machine learning (ML) model for diagnosing and monitoring Parkinson's disease (PD) in an Internet of Things (IoT) environment using rest-state EEG signals (rs-EEG). We computed different types of entropy from EEG signals and found that Fuzzy Entropy performed the best in diagnosing and monitoring PD using rs-EEG. We also investigated different combinations of signal frequency ranges and EEG channels to accurately diagnose PD. Finally, with a fewer number of features (11 features), we achieved a maximum classification accuracy (ARKF) of ~99.9%. The most prominent frequency range of EEG signals has been identified, and we have found that high classification accuracy depends on low-frequency signal components (0-4 Hz). Moreover, the most informative signals were mainly received from the right hemisphere of the head (F8, P8, T8, FC6). Furthermore, we assessed the accuracy of the diagnosis of PD using three different lengths of EEG data (150-1000 samples). Because the computational complexity is reduced by reducing the input data. As a result, we have achieved a maximum mean accuracy of 99.9% for a sample length (LEEG) of 1000 (~7.8 seconds), 98.2% with a LEEG of 800 (~6.2 seconds), and 79.3% for LEEG = 150 (~1.2 seconds). By reducing the number of features and segment lengths, the computational cost of classification can be reduced. Lower-performance smart ML sensors can be used in IoT environments for enhances human resilience to PD.
Abstract:The sun is highly complex in nature and its observatory imagery features is one of the most important sources of information about the sun activity, space and Earth's weather conditions. The NASA, solar Dynamics Observatory captures approximately 70,000 images of the sun activity in a day and the continuous visual inspection of this solar observatory images is challenging. In this study, we developed a technique of tracking the sun's activity using 2D circular kernel time series transformation, statistical and entropy measures, with machine learning approaches. The technique involves transforming the solar observatory image section into 1-Dimensional time series (1-DTS) while the statistical and entropy measures (Approach 1) and direct classification (Approach 2) is used to capture the extraction features from the 1-DTS for machine learning classification into 'solar storm' and 'no storm'. We found that the potential accuracy of the model in tracking the activity of the sun is approximately 0.981 for Approach 1 and 0.999 for Approach 2. The stability of the developed approach to rotational transformation of the solar observatory image is evident. When training on the original dataset for Approach 1, the match index (T90) of the distribution of solar storm areas reaches T90 ~ 0.993, and T90 ~ 0.951 for Approach 2. In addition, when using the extended training base, the match indices increased to T90 ~ 0.994 and T90 ~ 1, respectively. This model consistently classifies areas with swirling magnetic lines associated with solar storms and is robust to image rotation, glare, and optical artifacts.
Abstract:The study presents a bio-inspired chaos sensor based on the perceptron neural network. After training, the sensor on perceptron, having 50 neurons in the hidden layer and 1 neuron at the output, approximates the fuzzy entropy of short time series with high accuracy with a determination coefficient R2 ~ 0.9. The Hindmarsh-Rose spike model was used to generate time series of spike intervals, and datasets for training and testing the perceptron. The selection of the hyperparameters of the perceptron model and the estimation of the sensor accuracy were performed using the K-block cross-validation method. Even for a hidden layer with 1 neuron, the model approximates the fuzzy entropy with good results and the metric R2 ~ 0.5-0.8. In a simplified model with 1 neuron and equal weights in the first layer, the principle of approximation is based on the linear transformation of the average value of the time series into the entropy value. The bio-inspired chaos sensor model based on an ensemble of neurons is able to dynamically track the chaotic behavior of a spiked biosystem and transmit this information to other parts of the bio-system for further processing. The study will be useful for specialists in the field of computational neuroscience.
Abstract:Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic dynamic of the system. Our concept of Neural Network Entropy (NNetEn) is based on the classification of special datasets (MNIST-10 and SARS-CoV-2-RBV1) in relation to the entropy of the time series recorded in the reservoir of the LogNNet neural network. NNetEn estimates the chaotic dynamics of time series in an original way. Based on the NNetEn algorithm, we propose two new classification metrics: R2 Efficiency and Pearson Efficiency. The efficiency of NNetEn is verified on separation of two chaotic time series of sine mapping using dispersion analysis (ANOVA). For two close dynamic time series (r = 1.1918 and r = 1.2243), the F-ratio has reached the value of 124 and reflects high efficiency of the introduced method in classification problems. The EEG signal classification for healthy persons and patients with Alzheimer disease illustrates the practical application of the NNetEn features. Our computations demonstrate the synergistic effect of increasing classification accuracy when applying traditional entropy measures and the NNetEn concept conjointly. An implementation of the algorithms in Python is presented.
Abstract:Approximation of entropies of various types using machine learning (ML) regression methods is shown for the first time. The ML models presented in this study defines the complexity of short time series by approximating dissimilar entropy techniques such as Singular value decomposition entropy (SvdEn), Permutation entropy (PermEn), Sample entropy (SampEn) and Neural Network entropy (NNetEn) and their 2D analogies. A new method for calculating SvdEn2D, PermEn2D and SampEn2D for 2D images was tested using the technique of circular kernels. Training and test datasets on the basis of Sentinel-2 images are presented (2 train images and 198 test images). The results of entropy approximation are demonstrated using the example of calculating the 2D entropy of Sentinel-2 images and R2 metric evaluation. Applicability of the method for short time series with length from N = 5 to N = 113 elements is shown. A tendency for the R2 metric to decrease with an increase in the length of the time series was found. For SvdEn entropy, the regression accuracy is R2 > 0.99 for N = 5 and R2 > 0.82 for N = 113. The best metrics are observed for the ML_SvdEn2D and ML_NNetEn2D models. The results of the study can be used for fundamental research of entropy approximations of various types using ML regression, as well as for accelerating entropy calculations in remote sensing.
Abstract:Healthcare digitalization needs effective methods of human sensorics, when various parameters of the human body are instantly monitored in everyday life and connected to the Internet of Things (IoT). In particular, Machine Learning (ML) sensors for the prompt diagnosis of COVID-19 is an important case for IoT application in healthcare and Ambient Assistance Living (AAL). Determining the infected status of COVID-19 with various diagnostic tests and imaging results is costly and time-consuming. The aim of this study is to provide a fast, reliable and economical alternative tool for the diagnosis of COVID-19 based on the Routine Blood Values (RBV) values measured at admission. The dataset of the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 test results and 51 routine blood values. In this study, 13 popular classifier machine learning models and LogNNet neural network model were exanimated. The most successful classifier model in terms of time and accuracy in the detection of the disease was the Histogram-based Gradient Boosting (HGB). The HGB classifier identified the 11 most important features (LDL, Cholesterol, HDL-C, MCHC, Triglyceride, Amylase, UA, LDH, CK-MB, ALP and MCH) to detect the disease with 100% accuracy, learning time 6.39 sec. In addition, the importance of single, double and triple combinations of these features in the diagnosis of the disease was discussed. We propose to use these 11 traits and their combinations as important biomarkers for ML sensors in diagnosis of the disease, supporting edge computing on Arduino and cloud IoT service.
Abstract:In the present paper, we report on the switching dynamics of both single and coupled VO2-based oscillators, with resistive and capacitive coupling, and explore the capability of their application in oscillatory neural networks. Based on these results, we further select an adequate SPICE model to describe the modes of operation of coupled oscillator circuits. Physical mechanisms influencing the time of forward and reverse electrical switching, that determine the applicability limits of the proposed model, are identified. For the resistive coupling, it is shown that synchronization takes place at a certain value of the coupling resistance, though it is unstable and a synchronization failure occurs periodically. For the capacitive coupling, two synchronization modes, with weak and strong coupling, are found. The transition between these modes is accompanied by chaotic oscillations. A decrease in the width of the spectrum harmonics in the weak-coupling mode, and its increase in the strong-coupling one, is detected. The dependences of frequencies and phase differences of the coupled oscillatory circuits on the coupling capacitance are found. Examples of operation of coupled VO2 oscillators as a central pattern generator are demonstrated.
Abstract:We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices. The model system under study represents two oscillators based on thermally coupled VO2 switches. Numerical simulation shows that the effective action radius RTC of coupling depends both on the total energy released during switching and on the average power. It is experimentally and numerically proved that the temperature change dT commences almost synchronously with the released power peak and T-coupling reveals itself up to a frequency of about 10 kHz. For the studied switching structure configuration, the RTC value varies over a wide range from 4 to 45 mkm, depending on the external circuit capacitance C and resistance Ri, but the variation of Ri is more promising from the practical viewpoint. In the case of a "weak" coupling, synchronization is accompanied by attraction effect and decrease of the main spectra harmonics width. In the case of a "strong" coupling, the number of effects increases, synchronization can occur on subharmonics resulting in multilevel stable synchronization of two oscillators. An advanced algorithm for synchronization efficiency and subharmonic ratio calculation is proposed. It is shown that of the two oscillators the leading one is that with a higher main frequency, and, in addition, the frequency stabilization effect is observed. Also, in the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by ~ 10 %. The obtained results have a universal character and open up a new kind of coupling in ONNs, namely, T-coupling, which allows for easy transition from 2D to 3D integration. The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.
Abstract:Development of artificial oscillator-based spiking neural networks (SNN), which are able to solve effectively various cybernetics problems including image recognition and adaptive control, is a key line of research. We have thoroughly explored the scheme of two thermally coupled $VO_2$ oscillators and found its effect of high order synchronization (HOS), which may be used to increase SNN classification capacity $N_s$. Phase-locking estimation method has been developed to determine values of subharmonic ratio SHR and synchronization effectiveness {\eta}. The experimental scheme has $N_s=12$ and SHR distributions are shaped as Arnold's tongues. In a model $N_s$ may reach maximum of $N_s>150$ at certain levels of coupling strength and noise. We demonstrate the long-range synchronization effect in a one-dimensional chain of oscillators and the phenomenon of synchronization transfer even at low values of {\eta} for intermediate links. The paper demonstrates realization of analogue operation of "multiplication", binary logic, and possibility of development of the interface between SNN and computer. The described effects increasing classification capacity of oscillator schemes and calculation principles based on the universal physical effect - HOS may be applied for any spiking type oscillators with any coupling type therefore enhancing practical value of the presented results to expand SNN capabilities.