The study presents a bio-inspired chaos sensor based on the perceptron neural network. After training, the sensor on perceptron, having 50 neurons in the hidden layer and 1 neuron at the output, approximates the fuzzy entropy of short time series with high accuracy with a determination coefficient R2 ~ 0.9. The Hindmarsh-Rose spike model was used to generate time series of spike intervals, and datasets for training and testing the perceptron. The selection of the hyperparameters of the perceptron model and the estimation of the sensor accuracy were performed using the K-block cross-validation method. Even for a hidden layer with 1 neuron, the model approximates the fuzzy entropy with good results and the metric R2 ~ 0.5-0.8. In a simplified model with 1 neuron and equal weights in the first layer, the principle of approximation is based on the linear transformation of the average value of the time series into the entropy value. The bio-inspired chaos sensor model based on an ensemble of neurons is able to dynamically track the chaotic behavior of a spiked biosystem and transmit this information to other parts of the bio-system for further processing. The study will be useful for specialists in the field of computational neuroscience.