Abstract:This paper introduces RawBoost, a data boosting and augmentation method for the design of more reliable spoofing detection solutions which operate directly upon raw waveform inputs. While RawBoost requires no additional data sources, e.g. noise recordings or impulse responses and is data, application and model agnostic, it is designed for telephony scenarios. Based upon the combination of linear and non-linear convolutive noise, impulsive signal-dependent additive noise and stationary signal-independent additive noise, RawBoost models nuisance variability stemming from, e.g., encoding, transmission, microphones and amplifiers, and both linear and non-linear distortion. Experiments performed using the ASVspoof 2021 logical access database show that RawBoost improves the performance of a state-of-the-art raw end-to-end baseline system by 27% relative and is only outperformed by solutions that either depend on external data or that require additional intervention at the model level.
Abstract:Artefacts that serve to distinguish bona fide speech from spoofed or deepfake speech are known to reside in specific subbands and temporal segments. Various approaches can be used to capture and model such artefacts, however, none works well across a spectrum of diverse spoofing attacks. Reliable detection then often depends upon the fusion of multiple detection systems, each tuned to detect different forms of attack. In this paper we show that better performance can be achieved when the fusion is performed within the model itself and when the representation is learned automatically from raw waveform inputs. The principal contribution is a spectro-temporal graph attention network (GAT) which learns the relationship between cues spanning different sub-bands and temporal intervals. Using a model-level graph fusion of spectral (S) and temporal (T) sub-graphs and a graph pooling strategy to improve discrimination, the proposed RawGAT-ST model achieves an equal error rate of 1.06 % for the ASVspoof 2019 logical access database. This is one of the best results reported to date and is reproducible using an open source implementation.