Abstract:Recently, it has been proven that evolutionary algorithms produce good results for a wide range of combinatorial optimization problems. Some of the considered problems are tackled by evolutionary algorithms that use a representation which enables them to construct solutions in a dynamic programming fashion. We take a general approach and relate the construction of such algorithms to the development of algorithms using dynamic programming techniques. Thereby, we give general guidelines on how to develop evolutionary algorithms that have the additional ability of carrying out dynamic programming steps. Finally, we show that for a wide class of the so-called DP-benevolent problems (which are known to admit FPTAS) there exists a fully polynomial-time randomized approximation scheme based on an evolutionary algorithm.
Abstract:The all-pairs shortest path problem is the first non-artificial problem for which it was shown that adding crossover can significantly speed up a mutation-only evolutionary algorithm. Recently, the analysis of this algorithm was refined and it was shown to have an expected optimization time (w.r.t. the number of fitness evaluations) of $\Theta(n^{3.25}(\log n)^{0.25})$. In contrast to this simple algorithm, evolutionary algorithms used in practice usually employ refined recombination strategies in order to avoid the creation of infeasible offspring. We study extensions of the basic algorithm by two such concepts which are central in recombination, namely \emph{repair mechanisms} and \emph{parent selection}. We show that repairing infeasible offspring leads to an improved expected optimization time of $\mathord{O}(n^{3.2}(\log n)^{0.2})$. As a second part of our study we prove that choosing parents that guarantee feasible offspring results in an even better optimization time of $\mathord{O}(n^{3}\log n)$. Both results show that already simple adjustments of the recombination operator can asymptotically improve the runtime of evolutionary algorithms.