Abstract:We present WeatherMesh-3 (WM-3), an operational transformer-based global weather forecasting system that improves the state of the art in both accuracy and computational efficiency. We introduce the following advances: 1) a latent rollout that enables arbitrary-length predictions in latent space without intermediate encoding or decoding; and 2) a modular architecture that flexibly utilizes mixed-horizon processors and encodes multiple real-time analyses to create blended initial conditions. WM-3 generates 14-day global forecasts at 0.25-degree resolution in 12 seconds on a single RTX 4090. This represents a >100,000-fold speedup over traditional NWP approaches while achieving superior accuracy with up to 37.7% improvement in RMSE over operational models, requiring only a single consumer-grade GPU for deployment. We aim for WM-3 to democratize weather forecasting by providing an accessible, lightweight model for operational use while pushing the performance boundaries of machine learning-based weather prediction.
Abstract:Clouds play a significant role in global temperature regulation through their effect on planetary albedo. Anthropogenic emissions of aerosols can alter the albedo of clouds, but the extent of this effect, and its consequent impact on temperature change, remains uncertain. Human-induced clouds caused by ship aerosol emissions, commonly referred to as ship tracks, provide visible manifestations of this effect distinct from adjacent cloud regions and therefore serve as a useful sandbox to study human-induced clouds. However, the lack of large-scale ship track data makes it difficult to deduce their general effects on cloud formation. Towards developing automated approaches to localize ship tracks at scale, we present CloudTracks, a dataset containing 3,560 satellite images labeled with more than 12,000 ship track instance annotations. We train semantic segmentation and instance segmentation model baselines on our dataset and find that our best model substantially outperforms previous state-of-the-art for ship track localization (61.29 vs. 48.65 IoU). We also find that the best instance segmentation model is able to identify the number of ship tracks in each image more accurately than the previous state-of-the-art (1.64 vs. 4.99 MAE). However, we identify cases where the best model struggles to accurately localize and count ship tracks, so we believe CloudTracks will stimulate novel machine learning approaches to better detect elongated and overlapping features in satellite images. We release our dataset openly at {zenodo.org/records/10042922}.