Abstract:This paper explores the dual impact of digital banks and alternative lenders on financial inclusion and the regulatory challenges posed by their business models. It discusses the integration of digital platforms, machine learning (ML), and Large Language Models (LLMs) in enhancing financial services accessibility for underserved populations. Through a detailed analysis of operational frameworks and technological infrastructures, this research identifies key mechanisms that facilitate broader financial access and mitigate traditional barriers. Additionally, the paper addresses significant regulatory concerns involving data privacy, algorithmic bias, financial stability, and consumer protection. Employing a mixed-methods approach, which combines quantitative financial data analysis with qualitative insights from industry experts, this paper elucidates the complexities of leveraging digital technology to foster financial inclusivity. The findings underscore the necessity of evolving regulatory frameworks that harmonize innovation with comprehensive risk management. This paper concludes with policy recommendations for regulators, financial institutions, and technology providers, aiming to cultivate a more inclusive and stable financial ecosystem through prudent digital technology integration.
Abstract:Maximum Inner Product Search (MIPS) is a popular problem in the machine learning literature due to its applicability in a wide array of applications, such as recommender systems. In high-dimensional settings, however, MIPS queries can become computationally expensive as most existing solutions do not scale well with data dimensionality. In this work, we present a state-of-the-art algorithm for the MIPS problem in high dimensions, dubbed BanditMIPS. BanditMIPS is a randomized algorithm that borrows techniques from multi-armed bandits to reduce the MIPS problem to a best-arm identification problem. BanditMIPS reduces the complexity of state-of-the-art algorithms from $O(\sqrt{d})$ to $O(\text{log}d)$, where $d$ is the dimension of the problem data vectors. On high-dimensional real-world datasets, BanditMIPS runs approximately 12 times faster than existing approaches and returns the same solution. BanditMIPS requires no preprocessing of the data and includes a hyperparameter that practitioners may use to trade off accuracy and runtime. We also propose a variant of our algorithm, named BanditMIPS-$\alpha$, which employs non-uniform sampling across the data dimensions to provide further speedups.