Abstract:Large language models (LLMs) have demonstrated impressive capabilities in natural language generation. However, their output quality can be inconsistent, posing challenges for generating natural language from logical forms (LFs). This task requires the generated outputs to embody the exact semantics of LFs, without missing any LF semantics or creating any hallucinations. In this work, we tackle this issue by proposing a novel generate-and-rerank approach. Our approach involves initially generating a set of candidate outputs by prompting an LLM and subsequently reranking them using a task-specific reranker model. In addition, we curate a manually collected dataset to evaluate the alignment between different ranking metrics and human judgements. The chosen ranking metrics are utilized to enhance the training and evaluation of the reranker model. By conducting extensive experiments on three diverse datasets, we demonstrate that the candidates selected by our reranker outperform those selected by baseline methods in terms of semantic consistency and fluency, as measured by three comprehensive metrics. Our findings provide strong evidence for the effectiveness of our approach in improving the quality of generated outputs.
Abstract:Eva is a multimodal conversational system that helps users to accomplish their domain goals through collaborative dialogue. The system does this by inferring users' intentions and plans to achieve those goals, detects whether obstacles are present, finds plans to overcome them or to achieve higher-level goals, and plans its actions, including speech acts,to help users accomplish those goals. In doing so, the system maintains and reasons with its own beliefs, goals and intentions, and explicitly reasons about those of its user. Belief reasoning is accomplished with a modal Horn-clause meta-interpreter. The planning and reasoning subsystems obey the principles of persistent goals and intentions, including the formation and decomposition of intentions to perform complex actions, as well as the conditions under which they can be given up. In virtue of its planning process, the system treats its speech acts just like its other actions -- physical acts affect physical states, digital acts affect digital states, and speech acts affect mental and social states. This general approach enables Eva to plan a variety of speech acts including requests, informs, questions, confirmations, recommendations, offers, acceptances, greetings, and emotive expressions. Each of these has a formally specified semantics which is used during the planning and reasoning processes. Because it can keep track of different users' mental states, it can engage in multi-party dialogues. Importantly, Eva can explain its utterances because it has created a plan standing behind each of them. Finally, Eva employs multimodal input and output, driving an avatar that can perceive and employ facial and head movements along with emotive speech acts.