Abstract:Millimeter wave (mmWave) communications employ narrow-beam directional communications to compensate for the high path loss at mmWave frequencies. Compared to their omnidirectional counterparts, an additional step of aligning the transmitter's and receiver's antennas is required. In current standards such as 802.11ad, this beam alignment process is implemented via an exhaustive search through the horizontal plane known as beam sweeping. However, the beam sweeping process is unauthenticated. As a result, an adversary, Mallory, can launch an active beam-stealing attack by injecting forged beacons of high power, forcing the legitimate devices to beamform towards her direction. Mallory is now in control of the communication link between the two devices, thus breaking the false sense of security given by the directionality of mmWave transmissions. Prior works have added integrity protection to beam alignment messages to prevent forgeries. In this paper, we demonstrate a new beam-stealing attack that does not require message forging. We show that Mallory can amplify and relay a beam sweeping frame from her direction without altering its contents. Intuitively, cryptographic primitives cannot verify physical properties such as the SNR used in beam selection. We propose a new beam sweeping protocol called SecBeam that utilizes power/sector randomization and coarse angle-of-arrival information to detect amplify-and-relay attacks. We demonstrate the security and performance of SecBeam using an experimental mmWave platform and via ray-tracing simulations.
Abstract:Many Next Generation (NextG) applications feature devices that are capable of communicating and sensing in the Millimeter-Wave (mmWave) bands. Trust establishment is an important first step to bootstrap secure mmWave communication links, which is challenging due to the lack of prior secrets and the fact that traditional cryptographic authentication methods cannot bind digital trust with physical properties. Previously, context-based device pairing approaches were proposed to extract shared secrets from common context, using various sensing modalities. However, they suffer from various limitations in practicality and security. In this work, we propose the first secret-free device pairing scheme in the mmWave band that explores the unique physical-layer properties of mmWave communications. Our basic idea is to let Alice and Bob derive common randomness by sampling physical activity in the surrounding environment that disturbs their wireless channel. They construct reliable fingerprints of the activity by extracting event timing information from the channel state. We further propose an uncoordinated path hopping mechanism to resolve the challenges of beam alignment for activity sensing without prior trust. A key novelty of our protocol is that it remains secure against both co-located passive adversaries and active Man-in-the-Middle attacks, which is not possible with existing context-based pairing approaches. We implement our protocol in a 28GHz mmWave testbed, and experimentally evaluate its security in realistic indoor environments. Results show that our protocol can effectively thwart several different types of adversaries.