Abstract:The inherent "black box" nature of deep neural networks (DNNs) compromises their transparency and reliability. Recently, explainable AI (XAI) has garnered increasing attention from researchers. Several perturbation-based interpretations have emerged. However, these methods often fail to adequately consider feature dependencies. To solve this problem, we introduce a perturbation-based interpretation guided by feature coalitions, which leverages deep information of network to extract correlated features. Then, we proposed a carefully-designed consistency loss to guide network interpretation. Both quantitative and qualitative experiments are conducted to validate the effectiveness of our proposed method. Code is available at github.com/Teriri1999/Perturebation-on-Feature-Coalition.
Abstract:A recent study on the interpretability of real-valued convolutional neural networks (CNNs) {Stankovic_Mandic_2023CNN} has revealed a direct and physically meaningful link with the task of finding features in data through matched filters. However, applying this paradigm to illuminate the interpretability of complex-valued CNNs meets a formidable obstacle: the extension of matched filtering to a general class of noncircular complex-valued data, referred to here as the widely linear matched filter (WLMF), has been only implicit in the literature. To this end, to establish the interpretability of the operation of complex-valued CNNs, we introduce a general WLMF paradigm, provide its solution and undertake analysis of its performance. For rigor, our WLMF solution is derived without imposing any assumption on the probability density of noise. The theoretical advantages of the WLMF over its standard strictly linear counterpart (SLMF) are provided in terms of their output signal-to-noise-ratios (SNRs), with WLMF consistently exhibiting enhanced SNR. Moreover, the lower bound on the SNR gain of WLMF is derived, together with condition to attain this bound. This serves to revisit the convolution-activation-pooling chain in complex-valued CNNs through the lens of matched filtering, which reveals the potential of WLMFs to provide physical interpretability and enhance explainability of general complex-valued CNNs. Simulations demonstrate the agreement between the theoretical and numerical results.
Abstract:Compressive sensing (CS) has been widely applied in signal and image processing fields. Traditional CS reconstruction algorithms have a complete theoretical foundation but suffer from the high computational complexity, while fashionable deep network-based methods can achieve high-accuracy reconstruction of CS but are short of interpretability. These facts motivate us to develop a deep unfolding network named the penalty-based independent parameters optimization network (PIPO-Net) to combine the merits of the above mentioned two kinds of CS methods. Each module of PIPO-Net can be viewed separately as an optimization problem with respective penalty function. The main characteristic of PIPO-Net is that, in each round of training, the learnable parameters in one module are updated independently from those of other modules. This makes the network more flexible to find the optimal solutions of the corresponding problems. Moreover, the mean-subtraction sampling and the high-frequency complementary blocks are developed to improve the performance of PIPO-Net. Experiments on reconstructing CS images demonstrate the effectiveness of the proposed PIPO-Net.