Abstract:For $360^{\circ}$ video streaming, FoV-adaptive coding that allocates more bits for the predicted user's field of view (FoV) is an effective way to maximize the rendered video quality under the limited bandwidth. We develop a low-latency FoV-adaptive coding and streaming system for interactive applications that is robust to bandwidth variations and FoV prediction errors. To minimize the end-to-end delay and yet maximize the coding efficiency, we propose a frame-level FoV-adaptive inter-coding structure. In each frame, regions that are in or near the predicted FoV are coded using temporal and spatial prediction, while a small rotating region is coded with spatial prediction only. This rotating intra region periodically refreshes the entire frame, thereby providing robustness to both FoV prediction errors and frame losses due to transmission errors. The system adapts the sizes and rates of different regions for each video segment to maximize the rendered video quality under the predicted bandwidth constraint. Integrating such frame-level FoV adaptation with temporal prediction is challenging due to the temporal variations of the FoV. We propose novel ways for modeling the influence of FoV dynamics on the quality-rate performance of temporal predictive coding.We further develop LSTM-based machine learning models to predict the user's FoV and network bandwidth.The proposed system is compared with three benchmark systems, using real-world network bandwidth traces and FoV traces, and is shown to significantly improve the rendered video quality, while achieving very low end-to-end delay and low frame-freeze probability.
Abstract:Instrumental variable identification is a concept in causal statistics for estimating the counterfactual effect of treatment D on output Y controlling for covariates X using observational data. Even when measurements of (Y,D) are confounded, the treatment effect on the subpopulation of compliers can nonetheless be identified if an instrumental variable Z is available, which is independent of (Y,D) conditional on X and the unmeasured confounder. We introduce a de-biased machine learning (DML) approach to estimating complier parameters with high-dimensional data. Complier parameters include local average treatment effect, average complier characteristics, and complier counterfactual outcome distributions. In our approach, the de-biasing is itself performed by machine learning, a variant called de-biased machine learning via regularized Riesz representers (DML-RRR). We prove our estimator is consistent, asymptotically normal, and semi-parametrically efficient. In experiments, our estimator outperforms state of the art alternatives. We use it to estimate the effect of 401(k) participation on the distribution of net financial assets.