Instrumental variable identification is a concept in causal statistics for estimating the counterfactual effect of treatment D on output Y controlling for covariates X using observational data. Even when measurements of (Y,D) are confounded, the treatment effect on the subpopulation of compliers can nonetheless be identified if an instrumental variable Z is available, which is independent of (Y,D) conditional on X and the unmeasured confounder. We introduce a de-biased machine learning (DML) approach to estimating complier parameters with high-dimensional data. Complier parameters include local average treatment effect, average complier characteristics, and complier counterfactual outcome distributions. In our approach, the de-biasing is itself performed by machine learning, a variant called de-biased machine learning via regularized Riesz representers (DML-RRR). We prove our estimator is consistent, asymptotically normal, and semi-parametrically efficient. In experiments, our estimator outperforms state of the art alternatives. We use it to estimate the effect of 401(k) participation on the distribution of net financial assets.