Abstract:Traditional dataset retrieval systems index on metadata information rather than on the data values. Thus relying primarily on manual annotations and high-quality metadata, processes known to be labour-intensive and challenging to automate. We propose a method to support metadata enrichment with topic annotations of column headers using three Large Language Models (LLMs): ChatGPT-3.5, GoogleBard and GoogleGemini. We investigate the LLMs ability to classify column headers based on domain-specific topics from a controlled vocabulary. We evaluate our approach by assessing the internal consistency of the LLMs, the inter-machine alignment, and the human-machine agreement for the topic classification task. Additionally, we investigate the impact of contextual information (i.e. dataset description) on the classification outcomes. Our results suggest that ChatGPT and GoogleGemini outperform GoogleBard for internal consistency as well as LLM-human-alignment. Interestingly, we found that context had no impact on the LLMs performances. This work proposes a novel approach that leverages LLMs for text classification using a controlled topic vocabulary, which has the potential to facilitate automated metadata enrichment, thereby enhancing dataset retrieval and the Findability, Accessibility, Interoperability and Reusability (FAIR) of research data on the Web.
Abstract:Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.