Abstract:In the e-commerce advertising scenario, estimating the true probabilities (known as a calibrated estimate) on CTR and CVR is critical and can directly affect the benefits of the buyer, seller and platform. Previous research has introduced numerous solutions for addressing the calibration problem. These methods typically involve the training of calibrators using a validation set and subsequently applying these calibrators to correct the original estimated values during online inference. However, what sets e-commerce advertising scenarios is the challenge of multi-field calibration. Multi-field calibration can be subdivided into two distinct sub-problems: value calibration and shape calibration. Value calibration is defined as no over- or under-estimation for each value under concerned fields. Shape calibration is defined as no over- or under-estimation for each subset of the pCTR within the specified range under condition of concerned fields. In order to achieve shape calibration and value calibration, it is necessary to have a strong data utilization ability.Because the quantity of pCTR specified range for single field-value sample is relative small, which makes the calibrator more difficult to train. However the existing methods cannot simultaneously fulfill both value calibration and shape calibration. To solve these problems, we propose a new method named Deep Ensemble Shape Calibration (DESC). We introduce innovative basis calibration functions, which enhance both function expression capabilities and data utilization by combining these basis calibration functions. A significant advancement lies in the development of an allocator capable of allocating the most suitable shape calibrators to different estimation error distributions within diverse fields and values.
Abstract:In online advertising scenario, sellers often create multiple creatives to provide comprehensive demonstrations, making it essential to present the most appealing design to maximize the Click-Through Rate (CTR). However, sellers generally struggle to consider users preferences for creative design, leading to the relatively lower aesthetics and quantities compared to Artificial Intelligence (AI)-based approaches. Traditional AI-based approaches still face the same problem of not considering user information while having limited aesthetic knowledge from designers. In fact that fusing the user information, the generated creatives can be more attractive because different users may have different preferences. To optimize the results, the generated creatives in traditional methods are then ranked by another module named creative ranking model. The ranking model can predict the CTR score for each creative considering user features. However, the two above stages are regarded as two different tasks and are optimized separately. In this paper, we proposed a new automated Creative Generation pipeline for Click-Through Rate (CG4CTR) with the goal of improving CTR during the creative generation stage. Our contributions have 4 parts: 1) The inpainting mode in stable diffusion is firstly applied to creative generation task in online advertising scene. A self-cyclic generation pipeline is proposed to ensure the convergence of training. 2) Prompt model is designed to generate individualized creatives for different user groups, which can further improve the diversity and quality. 3) Reward model comprehensively considers the multimodal features of image and text to improve the effectiveness of creative ranking task, and it is also critical in self-cyclic pipeline. 4) The significant benefits obtained in online and offline experiments verify the significance of our proposed method.