Abstract:SecureBoost is a tree-boosting algorithm that leverages homomorphic encryption (HE) to protect data privacy in vertical federated learning. SecureBoost and its variants have been widely adopted in fields such as finance and healthcare. However, the hyperparameters of SecureBoost are typically configured heuristically for optimizing model performance (i.e., utility) solely, assuming that privacy is secured. Our study found that SecureBoost and some of its variants are still vulnerable to label leakage. This vulnerability may lead the current heuristic hyperparameter configuration of SecureBoost to a suboptimal trade-off between utility, privacy, and efficiency, which are pivotal elements toward a trustworthy federated learning system. To address this issue, we propose the Constrained Multi-Objective SecureBoost (CMOSB) algorithm, which aims to approximate Pareto optimal solutions that each solution is a set of hyperparameters achieving an optimal trade-off between utility loss, training cost, and privacy leakage. We design measurements of the three objectives, including a novel label inference attack named instance clustering attack (ICA) to measure the privacy leakage of SecureBoost. Additionally, we provide two countermeasures against ICA. The experimental results demonstrate that the CMOSB yields superior hyperparameters over those optimized by grid search and Bayesian optimization regarding the trade-off between utility loss, training cost, and privacy leakage.
Abstract:SecureBoost is a tree-boosting algorithm leveraging homomorphic encryption to protect data privacy in vertical federated learning setting. It is widely used in fields such as finance and healthcare due to its interpretability, effectiveness, and privacy-preserving capability. However, SecureBoost suffers from high computational complexity and risk of label leakage. To harness the full potential of SecureBoost, hyperparameters of SecureBoost should be carefully chosen to strike an optimal balance between utility, efficiency, and privacy. Existing methods either set hyperparameters empirically or heuristically, which are far from optimal. To fill this gap, we propose a Constrained Multi-Objective SecureBoost (CMOSB) algorithm to find Pareto optimal solutions that each solution is a set of hyperparameters achieving optimal tradeoff between utility loss, training cost, and privacy leakage. We design measurements of the three objectives. In particular, the privacy leakage is measured using our proposed instance clustering attack. Experimental results demonstrate that the CMOSB yields not only hyperparameters superior to the baseline but also optimal sets of hyperparameters that can support the flexible requirements of FL participants.