Abstract:Recent advances in defect detection use language models. Existing works enhanced the training data to improve the models' robustness when applied to semantically identical code (i.e., predictions should be the same). However, the use of semantically identical code has not been considered for improving the tools during their application - a concept closely related to metamorphic testing. The goal of our study is to determine whether we can use semantic-preserving transformations, analogue to mutation operators, to improve the performance of defect detection tools in the testing stage. We first collect existing publications which implemented semantic-preserving transformations and share their implementation, such that we can reuse them. We empirically study the effectiveness of three different ensemble strategies for enhancing defect detection tools. We apply the collected transformations on the Devign dataset, considering vulnerabilities as a type of defect, and two fine-tuned large language models for defect detection (VulBERTa, PLBART). We found 28 publications with 94 different transformations. We choose to implement 39 transformations from four of the publications, but a manual check revealed that 23 out 39 transformations change code semantics. Using the 16 remaining, correct transformations and three ensemble strategies, we were not able to increase the accuracy of the defect detection models. Our results show that reusing shared semantic-preserving transformation is difficult, sometimes even causing wrongful changes to the semantics. Keywords: defect detection, language model, semantic-preserving transformation, ensemble
Abstract:Traditional deep learning (DL) approaches based on supervised learning paradigms require large amounts of annotated data that are rarely available in the medical domain. Unsupervised Out-of-distribution (OOD) detection is an alternative that requires less annotated data. Further, OOD applications exploit the class skewness commonly present in medical data. Magnetic resonance imaging (MRI) has proven to be useful for prostate cancer (PCa) diagnosis and management, but current DL approaches rely on T2w axial MRI, which suffers from low out-of-plane resolution. We propose a multi-stream approach to accommodate different T2w directions to improve the performance of PCa lesion detection in an OOD approach. We evaluate our approach on a publicly available data-set, obtaining better detection results in terms of AUC when compared to a single direction approach (73.1 vs 82.3). Our results show the potential of OOD approaches for PCa lesion detection based on MRI.