Abstract:The proliferation of digital interactions across diverse domains, such as healthcare, e-commerce, gaming, and finance, has resulted in the generation of vast volumes of event stream (ES) data. ES data comprises continuous sequences of timestamped events that encapsulate detailed contextual information relevant to each domain. While ES data holds significant potential for extracting actionable insights and enhancing decision-making, its effective utilization is hindered by challenges such as the scarcity of labeled data and the fragmented nature of existing research efforts. Self-Supervised Learning (SSL) has emerged as a promising paradigm to address these challenges by enabling the extraction of meaningful representations from unlabeled ES data. In this survey, we systematically review and synthesize SSL methodologies tailored for ES modeling across multiple domains, bridging the gaps between domain-specific approaches that have traditionally operated in isolation. We present a comprehensive taxonomy of SSL techniques, encompassing both predictive and contrastive paradigms, and analyze their applicability and effectiveness within different application contexts. Furthermore, we identify critical gaps in current research and propose a future research agenda aimed at developing scalable, domain-agnostic SSL frameworks for ES modeling. By unifying disparate research efforts and highlighting cross-domain synergies, this survey aims to accelerate innovation, improve reproducibility, and expand the applicability of SSL to diverse real-world ES challenges.
Abstract:Graphs are ubiquitous in real-world applications, ranging from social networks to biological systems, and have inspired the development of Graph Neural Networks (GNNs) for learning expressive representations. While most research has centered on static graphs, many real-world scenarios involve dynamic, temporally evolving graphs, motivating the need for Continuous-Time Dynamic Graph (CTDG) models. This paper provides a comprehensive review of Graph Representation Learning (GRL) on CTDGs with a focus on Self-Supervised Representation Learning (SSRL). We introduce a novel theoretical framework that analyzes the expressivity of CTDG models through an Information-Flow (IF) lens, quantifying their ability to propagate and encode temporal and structural information. Leveraging this framework, we categorize existing CTDG methods based on their suitability for different graph types and application scenarios. Within the same scope, we examine the design of SSRL methods tailored to CTDGs, such as predictive and contrastive approaches, highlighting their potential to mitigate the reliance on labeled data. Empirical evaluations on synthetic and real-world datasets validate our theoretical insights, demonstrating the strengths and limitations of various methods across long-range, bi-partite and community-based graphs. This work offers both a theoretical foundation and practical guidance for selecting and developing CTDG models, advancing the understanding of GRL in dynamic settings.