Abstract:Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics, e.g. for embodied agents or to train 3D generative models. However, so far methods that estimate the category-level object pose require either large amounts of human annotations, CAD models or input from RGB-D sensors. In contrast, we tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos without human supervision. We propose a two-step pipeline: First, we introduce a multi-view alignment procedure that determines canonical camera poses across videos with a novel and robust cyclic distance formulation for geometric and appearance matching using reconstructed coarse meshes and DINOv2 features. In a second step, the canonical poses and reconstructed meshes enable us to train a model for 3D pose estimation from a single image. In particular, our model learns to estimate dense correspondences between images and a prototypical 3D template by predicting, for each pixel in a 2D image, a feature vector of the corresponding vertex in the template mesh. We demonstrate that our method outperforms all baselines at the unsupervised alignment of object-centric videos by a large margin and provides faithful and robust predictions in-the-wild. Our code and data is available at https://github.com/GenIntel/uns-obj-pose3d.
Abstract:We propose SF2SE3, a novel approach to estimate scene dynamics in form of a segmentation into independently moving rigid objects and their SE(3)-motions. SF2SE3 operates on two consecutive stereo or RGB-D images. First, noisy scene flow is obtained by application of existing optical flow and depth estimation algorithms. SF2SE3 then iteratively (1) samples pixel sets to compute SE(3)-motion proposals, and (2) selects the best SE(3)-motion proposal with respect to a maximum coverage formulation. Finally, objects are formed by assigning pixels uniquely to the selected SE(3)-motions based on consistency with the input scene flow and spatial proximity. The main novelties are a more informed strategy for the sampling of motion proposals and a maximum coverage formulation for the proposal selection. We conduct evaluations on multiple datasets regarding application of SF2SE3 for scene flow estimation, object segmentation and visual odometry. SF2SE3 performs on par with the state of the art for scene flow estimation and is more accurate for segmentation and odometry.