Abstract:Natural scenes are of key interest for visual perception. Previous work on natural scenes has frequently focused on collections of discrete images with considerable physical differences from stimulus to stimulus. For many purposes it would, however, be desirable to have sets of natural images that vary smoothly along a continuum (for example in order to measure quantitative properties such as thresholds or precisions). This problem has typically been addressed by morphing a source into a target image. However, this approach yields transitions between images that primarily follow their low-level physical features and that can be semantically unclear or ambiguous. Here, in contrast, we used a different approach (Stable Diffusion XL) to synthesise a custom stimulus set of photorealistic images that are characterized by gradual transitions where each image is a clearly interpretable but unique exemplar from the same category. We developed natural scene stimulus sets from six categories with 18 objects each. For each object we generated 10 graded variants that are ordered along a perceptual continuum. We validated the image set psychophysically in a large sample of participants, ensuring that stimuli for each exemplar have varying levels of perceptual confusability. This image set is of interest for studies on visual perception, attention and short- and long-term memory.
Abstract:Humans possess the ability to identify and generalize relevant features of natural objects, which aids them in various situations. To investigate this phenomenon and determine the most effective representations for predicting human behavior, we conducted two experiments involving category learning and reward learning. Our experiments used realistic images as stimuli, and participants were tasked with making accurate decisions based on novel stimuli for all trials, thereby necessitating generalization. In both tasks, the underlying rules were generated as simple linear functions using stimulus dimensions extracted from human similarity judgments. Notably, participants successfully identified the relevant stimulus features within a few trials, demonstrating effective generalization. We performed an extensive model comparison, evaluating the trial-by-trial predictive accuracy of diverse deep learning models' representations of human choices. Intriguingly, representations from models trained on both text and image data consistently outperformed models trained solely on images, even surpassing models using the features that generated the task itself. These findings suggest that language-aligned visual representations possess sufficient richness to describe human generalization in naturalistic settings and emphasize the role of language in shaping human cognition.