Abstract:We present a novel approach for enhancing diversity and control in data annotation tasks by personalizing large language models (LLMs). We investigate the impact of injecting diverse persona descriptions into LLM prompts across two studies, exploring whether personas increase annotation diversity and whether the impacts of individual personas on the resulting annotations are consistent and controllable. Our results show that persona-prompted LLMs produce more diverse annotations than LLMs prompted without personas and that these effects are both controllable and repeatable, making our approach a suitable tool for improving data annotation in subjective NLP tasks like toxicity detection.
Abstract:Machine learning (ML)-based content moderation tools are essential to keep online spaces free from hateful communication. Yet, ML tools can only be as capable as the quality of the data they are trained on allows them. While there is increasing evidence that they underperform in detecting hateful communications directed towards specific identities and may discriminate against them, we know surprisingly little about the provenance of such bias. To fill this gap, we present a systematic review of the datasets for the automated detection of hateful communication introduced over the past decade, and unpack the quality of the datasets in terms of the identities that they embody: those of the targets of hateful communication that the data curators focused on, as well as those unintentionally included in the datasets. We find, overall, a skewed representation of selected target identities and mismatches between the targets that research conceptualizes and ultimately includes in datasets. Yet, by contextualizing these findings in the language and location of origin of the datasets, we highlight a positive trend towards the broadening and diversification of this research space.