Abstract:The presence of motion artifacts in magnetic resonance imaging (MRI) scans poses a significant challenge, where even minor patient movements can lead to artifacts that may compromise the scan's utility. This paper introduces Masked Motion Correction (MAMOC), a novel method designed to address the issue of Retrospective Artifact Correction (RAC) in motion-affected MRI brain scans. MAMOC uses masked autoencoding self-supervision and test-time prediction to efficiently remove motion artifacts, producing state-of-the-art, native resolution scans. Until recently, realistic data to evaluate retrospective motion correction methods did not exist, motion artifacts had to be simulated. Leveraging the MR-ART dataset, this work is the first to evaluate motion correction in MRI scans using real motion data, showing the superiority of MAMOC to existing motion correction (MC) methods.
Abstract:MRI scans provide valuable medical information, however they also contain sensitive and personally identifiable information (PII) that needs to be protected. Whereas MRI metadata is easily sanitized, MRI image data is a privacy risk because it contains information to render highly-realistic 3D visualizations of a patient's head, enabling malicious actors to possibly identify the subject by cross-referencing a database. Data anonymization and de-identification is concerned with ensuring the privacy and confidentiality of individuals' personal information. Traditional MRI de-identification methods remove privacy-sensitive parts (e.g. eyes, nose etc.) from a given scan. This comes at the expense of introducing a domain shift that can throw off downstream analyses. Recently, a GAN-based approach was proposed to de-identify a patient's scan by remodeling it (e.g. changing the face) rather than by removing parts. In this work, we propose CP-MAE, a model that de-identifies the face using masked autoencoders and that outperforms all previous approaches in terms of downstream task performance as well as de-identification. With our method we are able to synthesize scans of resolution up to $256^3$ (previously 128 cubic) which constitutes an eight-fold increase in the number of voxels. Using our construction we were able to design a system that exhibits a highly robust training stage, making it easy to fit the network on novel data.
Abstract:Artifacts on magnetic resonance scans are a serious challenge for both radiologists and computer-aided diagnosis systems. Most commonly, artifacts are caused by motion of the patients, but can also arise from device-specific abnormalities such as noise patterns. Irrespective of the source, artifacts can not only render a scan useless, but can potentially induce misdiagnoses if left unnoticed. For instance, an artifact may masquerade as a tumor or other abnormality. Retrospective artifact correction (RAC) is concerned with removing artifacts after the scan has already been taken. In this work, we propose a method capable of retrospectively removing eight common artifacts found in native-resolution MR imagery. Knowledge of the presence or location of a specific artifact is not assumed and the system is, by design, capable of undoing interactions of multiple artifacts. Our method is realized through the design of a novel volumetric transformer-based neural network that generalizes a \emph{window-centered} approach popularized by the Swin transformer. Unlike Swin, our method is (i) natively volumetric, (ii) geared towards dense prediction tasks instead of classification, and (iii), uses a novel and more global mechanism to enable information exchange between windows. Our experiments show that our reconstructions are considerably better than those attained by ResNet, V-Net, MobileNet-v2, DenseNet, CycleGAN and BicycleGAN. Moreover, we show that the reconstructed images from our model improves the accuracy of FSL BET, a standard skull-stripping method typically applied in diagnostic workflows.
Abstract:Privacy protection of medical image data is challenging. Even if metadata is removed, brain scans are vulnerable to attacks that match renderings of the face to facial image databases. Solutions have been developed to de-identify diagnostic scans by obfuscating or removing parts of the face. However, these solutions either fail to reliably hide the patient's identity or are so aggressive that they impair further analyses. We propose a new class of de-identification techniques that, instead of removing facial features, remodels them. Our solution relies on a conditional multi-scale GAN architecture. It takes a patient's MRI scan as input and generates a 3D volume conditioned on the patient's brain, which is preserved exactly, but where the face has been de-identified through remodeling. We demonstrate that our approach preserves privacy far better than existing techniques, without compromising downstream medical analyses. Analyses were run on the OASIS-3 and ADNI corpora.