Abstract:Despite continued advancement in recent years, deep neural networks still rely on large amounts of training data to avoid overfitting. However, labeled training data for real-world applications such as healthcare is limited and difficult to access given longstanding privacy, and strict data sharing policies. By manipulating image datasets in the pixel or feature space, existing data augmentation techniques represent one of the effective ways to improve the quantity and diversity of training data. Here, we look to advance augmentation techniques by building upon the emerging success of text-to-image diffusion probabilistic models in augmenting the training samples of our macroscopic skin disease dataset. We do so by enabling fine-grained control of the image generation process via input text prompts. We demonstrate that this generative data augmentation approach successfully maintains a similar classification accuracy of the visual classifier even when trained on a fully synthetic skin disease dataset. Similar to recent applications of generative models, our study suggests that diffusion models are indeed effective in generating high-quality skin images that do not sacrifice the classifier performance, and can improve the augmentation of training datasets after curation.
Abstract:We present a visual symptom checker that combines a pre-trained Convolutional Neural Network (CNN) with a Reinforcement Learning (RL) agent as a Question Answering (QA) model. This method increases the classification confidence and accuracy of the visual symptom checker, and decreases the average number of questions asked to narrow down the differential diagnosis. A Deep Q-Network (DQN)-based RL agent learns how to ask the patient about the presence of symptoms in order to maximize the probability of correctly identifying the underlying condition. The RL agent uses the visual information provided by CNN in addition to the answers to the asked questions to guide the QA system. We demonstrate that the RL-based approach increases the accuracy more than 20% compared to the CNN-only approach, which only uses the visual information to predict the condition. Moreover, the increased accuracy is up to 10% compared to the approach that uses the visual information provided by CNN along with a conventional decision tree-based QA system. We finally show that the RL-based approach not only outperforms the decision tree-based approach, but also narrows down the diagnosis faster in terms of the average number of asked questions.