Abstract:In this paper we revisit the classical problem of classification, but impose privacy constraints. Under such constraints, the raw data $(X_1,Y_1),\ldots,(X_n,Y_n)$ cannot be directly observed, and all classifiers are functions of the randomised outcome of a suitable local differential privacy mechanism. The statistician is free to choose the form of this privacy mechanism, and here we add Laplace distributed noise to a discretisation of the location of each feature vector $X_i$ and to its label $Y_i$. The classification rule is the privatized version of the well-studied partitioning classification rule. In addition to the standard Lipschitz and margin conditions, a novel characteristic is introduced, by which the exact rate of convergence of the classification error probability is calculated, both for non-private and private data.
Abstract:We study the excess minimum risk in statistical inference, defined as the difference between the minimum expected loss in estimating a random variable from an observed feature vector and the minimum expected loss in estimating the same random variable from a transformation (statistic) of the feature vector. After characterizing lossless transformations, i.e., transformations for which the excess risk is zero for all loss functions, we construct a partitioning test statistic for the hypothesis that a given transformation is lossless and show that for i.i.d. data the test is strongly consistent. More generally, we develop information-theoretic upper bounds on the excess risk that uniformly hold over fairly general classes of loss functions. Based on these bounds, we introduce the notion of a delta-lossless transformation and give sufficient conditions for a given transformation to be universally delta-lossless. Applications to classification, nonparametric regression, portfolio strategies, information bottleneck, and deep learning, are also surveyed.
Abstract:We study the problem nonparametric classification with repeated observations. Let $\bX$ be the $d$ dimensional feature vector and let $Y$ denote the label taking values in $\{1,\dots ,M\}$. In contrast to usual setup with large sample size $n$ and relatively low dimension $d$, this paper deals with the situation, when instead of observing a single feature vector $\bX$ we are given $t$ repeated feature vectors $\bV_1,\dots ,\bV_t $. Some simple classification rules are presented such that the conditional error probabilities have exponential convergence rate of convergence as $t\to\infty$. In the analysis, we investigate particular models like robust detection by nominal densities, prototype classification, linear transformation, linear classification, scaling.
Abstract:We revisit processes generated by iterated random functions driven by a stationary and ergodic sequence. Such a process is called strongly stable if a random initialization exists, for which the process is stationary and ergodic, and for any other initialization, the difference of the two processes converges to zero almost surely. Under some mild conditions on the corresponding recursive map, without any condition on the driving sequence, we show the strong stability of iterations. Several applications are surveyed such as stochastic approximation and queuing. Furthermore, new results are deduced for Langevin-type iterations with dependent noise and for multitype branching processes.
Abstract:We study the problem of density estimation for a random vector ${\boldsymbol X}$ in $\mathbb R^d$ with probability density $f(\boldsymbol x)$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. The optimal spanning tree $T^*$ is the spanning tree $T$, for which the Kullback-Leibler divergence of $f$ and $f_{T}$ is the smallest. From i.i.d. data we identify the optimal tree $T^*$ and computationally efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has that $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz continuous $f$ with bounded support, $\mathbb E\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\}=O(n^{-1/4})$.
Abstract:In this paper we revisit the classical problem of nonparametric regression, but impose local differential privacy constraints. Under such constraints, the raw data $(X_1,Y_1),\ldots,(X_n,Y_n)$, taking values in $\mathbb{R}^d \times \mathbb{R}$, cannot be directly observed, and all estimators are functions of the randomised output from a suitable privacy mechanism. The statistician is free to choose the form of the privacy mechanism, and here we add Laplace distributed noise to a discretisation of the location of a feature vector $X_i$ and to the value of its response variable $Y_i$. Based on this randomised data, we design a novel estimator of the regression function, which can be viewed as a privatised version of the well-studied partitioning regression estimator. The main result is that the estimator is strongly universally consistent. Our methods and analysis also give rise to a strongly universally consistent binary classification rule for locally differentially private data.
Abstract:We study universal consistency and convergence rates of simple nearest-neighbor prototype rules for the problem of multiclass classification in metric paces. We first show that a novel data-dependent partitioning rule, named Proto-NN, is universally consistent in any metric space that admits a universally consistent rule. Proto-NN is a significant simplification of OptiNet, a recently proposed compression-based algorithm that, to date, was the only algorithm known to be universally consistent in such a general setting. Practically, Proto-NN is simpler to implement and enjoys reduced computational complexity. We then proceed to study convergence rates of the excess error probability. We first obtain rates for the standard $k$-NN rule under a margin condition and a new generalized-Lipschitz condition. The latter is an extension of a recently proposed modified-Lipschitz condition from $\mathbb R^d$ to metric spaces. Similarly to the modified-Lipschitz condition, the new condition avoids any boundness assumptions on the data distribution. While obtaining rates for Proto-NN is left open, we show that a second prototype rule that hybridizes between $k$-NN and Proto-NN achieves the same rates as $k$-NN while enjoying similar computational advantages as Proto-NN. We conjecture however that, as $k$-NN, this hybrid rule is not consistent in general.