Abstract:Self-supervised monocular depth estimation (SSMDE) has gained attention in the field of deep learning as it estimates depth without requiring ground truth depth maps. This approach typically uses a photometric consistency loss between a synthesized image, generated from the estimated depth, and the original image, thereby reducing the need for extensive dataset acquisition. However, the conventional photometric consistency loss relies on the Lambertian assumption, which often leads to significant errors when dealing with reflective surfaces that deviate from this model. To address this limitation, we propose a novel framework that incorporates intrinsic image decomposition into SSMDE. Our method synergistically trains for both monocular depth estimation and intrinsic image decomposition. The accurate depth estimation facilitates multi-image consistency for intrinsic image decomposition by aligning different view coordinate systems, while the decomposition process identifies reflective areas and excludes corrupted gradients from the depth training process. Furthermore, our framework introduces a pseudo-depth generation and knowledge distillation technique to further enhance the performance of the student model across both reflective and non-reflective surfaces. Comprehensive evaluations on multiple datasets show that our approach significantly outperforms existing SSMDE baselines in depth prediction, especially on reflective surfaces.
Abstract:Monocular depth estimation has been widely studied, and significant improvements in performance have been recently reported. However, most previous works are evaluated on a few benchmark datasets, such as KITTI datasets, and none of the works provide an in-depth analysis of the generalization performance of monocular depth estimation. In this paper, we deeply investigate the various backbone networks (e.g.CNN and Transformer models) toward the generalization of monocular depth estimation. First, we evaluate state-of-the-art models on both in-distribution and out-of-distribution datasets, which have never been seen during network training. Then, we investigate the internal properties of the representations from the intermediate layers of CNN-/Transformer-based models using synthetic texture-shifted datasets. Through extensive experiments, we observe that the Transformers exhibit a strong shape-bias rather than CNNs, which have a strong texture-bias. We also discover that texture-biased models exhibit worse generalization performance for monocular depth estimation than shape-biased models. We demonstrate that similar aspects are observed in real-world driving datasets captured under diverse environments. Lastly, we conduct a dense ablation study with various backbone networks which are utilized in modern strategies. The experiments demonstrate that the intrinsic locality of the CNNs and the self-attention of the Transformers induce texture-bias and shape-bias, respectively.