Abstract:While it has long been recognized that a team of individual learning agents can be greater than the sum of its parts, recent work has shown that larger teams are not necessarily more effective than smaller ones. In this paper, we study why and under which conditions certain team structures promote effective learning for a population of individual learning agents. We show that, depending on the environment, some team structures help agents learn to specialize into specific roles, resulting in more favorable global results. However, large teams create credit assignment challenges that reduce coordination, leading to large teams performing poorly compared to smaller ones. We support our conclusions with both theoretical analysis and empirical results.
Abstract:Mixed incentives among a population with multiagent teams has been shown to have advantages over a fully cooperative system; however, discovering the best mixture of incentives or team structure is a difficult and dynamic problem. We propose a framework where individual learning agents self-regulate their configuration of incentives through various parts of their reward function. This work extends previous work by giving agents the ability to dynamically update their group alignment during learning and by allowing teammates to have different group alignment. Our model builds on ideas from hierarchical reinforcement learning and meta-learning to learn the configuration of a reward function that supports the development of a behavioral policy. We provide preliminary results in a commonly studied multiagent environment and find that agents can achieve better global outcomes by self-tuning their respective group alignment parameters.
Abstract:Machine learning has the potential to aid in mitigating the human effects of climate change. Previous applications of machine learning to tackle the human effects in climate change include approaches like informing individuals of their carbon footprint and strategies to reduce it. For these methods to be the most effective they must consider relevant social-psychological factors for each individual. Of social-psychological factors at play in climate change, affect has been previously identified as a key element in perceptions and willingness to engage in mitigative behaviours. In this work, we propose an investigation into how affect could be incorporated to enhance machine learning based interventions for climate change. We propose using affective agent-based modelling for climate change as well as the use of a simulated climate change social dilemma to explore the potential benefits of affective machine learning interventions. Behavioural and informational interventions can be a powerful tool in helping humans adopt mitigative behaviours. We expect that utilizing affective ML can make interventions an even more powerful tool and help mitigative behaviours become widely adopted.