Abstract:Cognitive diagnosis is a fundamental and critical task in learning assessment, which aims to infer students' proficiency on knowledge concepts from their response logs. Current works assume each knowledge concept will certainly be tested and covered by multiple exercises. However, whether online or offline courses, it's hardly feasible to completely cover all knowledge concepts in several exercises. Restricted tests lead to undiscovered knowledge deficits, especially untested knowledge concepts(UKCs). In this paper, we propose a novel \underline{Dis}entangling Heterogeneous \underline{K}nowledge \underline{C}ognitive \underline{D}iagnosis framework on untested knowledge(DisKCD). Specifically, we leverage course grades, exercise questions, and resources to learn the potential representations of students, exercises, and knowledge concepts. In particular, knowledge concepts are disentangled into tested and untested based on the limiting actual exercises. We construct a heterogeneous relation graph network via students, exercises, tested knowledge concepts(TKCs), and UKCs. Then, through a hierarchical heterogeneous message-passing mechanism, the fine-grained relations are incorporated into the embeddings of the entities. Finally, the embeddings will be applied to multiple existing cognitive diagnosis models to infer students' proficiency on UKCs. Experimental results on real-world datasets show that the proposed model can effectively improve the performance of the task of diagnosing students' proficiency on UKCs. Our anonymous code is available at https://anonymous.4open.science/r/DisKCD.
Abstract:Few-shot class-incremental learning (FSCIL) aims to acquire knowledge from novel classes with limited samples while retaining information about base classes. Existing methods address catastrophic forgetting and overfitting by freezing the feature extractor during novel-class learning. However, these methods usually tend to cause the confusion between base and novel classes, i.e., classifying novel-class samples into base classes. In this paper, we delve into this phenomenon to study its cause and solution. We first interpret the confusion as the collision between the novel-class and the base-class region in the feature space. Then, we find the collision is caused by the label-irrelevant redundancies within the base-class feature and pixel space. Through qualitative and quantitative experiments, we identify this redundancy as the shortcut in the base-class training, which can be decoupled to alleviate the collision. Based on this analysis, to alleviate the collision between base and novel classes, we propose a method for FSCIL named Redundancy Decoupling and Integration (RDI). RDI first decouples redundancies from base-class space to shrink the intra-base-class feature space. Then, it integrates the redundancies as a dummy class to enlarge the inter-base-class feature space. This process effectively compresses the base-class feature space, creating buffer space for novel classes and alleviating the model's confusion between the base and novel classes. Extensive experiments across benchmark datasets, including CIFAR-100, miniImageNet, and CUB-200-2011 demonstrate that our method achieves state-of-the-art performance.