Abstract:Many companies rely on APIs of managed AI models such as OpenAI's GPT-4 to create AI-enabled experiences in their products. Along with the benefits of ease of use and shortened time to production, this reliance on proprietary APIs has downsides in terms of model control, performance reliability, up-time predictability, and cost. At the same time, there has been a flurry of open source small language models (SLMs) that have been made available for commercial use. However, their readiness to replace existing capabilities remains unclear, and a systematic approach to test these models is not readily available. In this paper, we present a systematic evaluation methodology for, and characterization of, modern open source SLMs and their trade-offs when replacing a proprietary LLM APIs for a real-world product feature. We have designed SLaM, an automated analysis tool that enables the quantitative and qualitative testing of product features utilizing arbitrary SLMs. Using SLaM, we examine both the quality and the performance characteristics of modern SLMs relative to an existing customer-facing OpenAI-based implementation. We find that across 9 SLMs and 29 variants, we observe competitive quality-of-results for our use case, significant performance consistency improvement, and a cost reduction of 5x-29x when compared to OpenAI GPT-4.
Abstract:Conventional approaches to text classification typically assume the existence of a fixed set of predefined labels to which a given text can be classified. However, in real-world applications, there exists an infinite label space for describing a given text. In addition, depending on the aspect (sentiment, topic, etc.) and domain of the text (finance, legal, etc.), the interpretation of the label can vary greatly. This makes the task of text classification, particularly in the zero-shot scenario, extremely challenging. In this paper, we investigate the task of zero-shot text classification with the aim of improving the ability of pre-trained language models (PLMs) to generalize to both seen and unseen data across varying aspects and domains. To solve this we introduce two new simple yet effective pre-training strategies, Implicit and Explicit pre-training. These methods inject aspect-level understanding into the model at train time with the goal of conditioning the model to build task-level understanding. To evaluate this, we construct and release UTCD, a new benchmark dataset for evaluating text classification in zero-shot settings. Experimental results on UTCD show that our approach achieves improved zero-shot generalization on a suite of challenging datasets across an array of zero-shot formalizations.
Abstract:Today's production scale-out applications include many sub-application components, such as storage backends, logging infrastructure and AI models. These components have drastically different characteristics, are required to work in collaboration, and interface with each other as microservices. This leads to increasingly high complexity in developing, optimizing, configuring, and deploying scale-out applications, raising the barrier to entry for most individuals and small teams. We developed a novel co-designed runtime system, Jaseci, and programming language, Jac, which aims to reduce this complexity. The key design principle throughout Jaseci's design is to raise the level of abstraction by moving as much of the scale-out data management, microservice componentization, and live update complexity into the runtime stack to be automated and optimized automatically. We use real-world AI applications to demonstrate Jaseci's benefit for application performance and developer productivity.