Abstract:Discovering meaningful insights from a large dataset, known as Exploratory Data Analysis (EDA), is a challenging task that requires thorough exploration and analysis of the data. Automated Data Exploration (ADE) systems use goal-oriented methods with Large Language Models and Reinforcement Learning towards full automation. However, these methods require human involvement to anticipate goals that may limit insight extraction, while fully automated systems demand significant computational resources and retraining for new datasets. We introduce QUIS, a fully automated EDA system that operates in two stages: insight generation (ISGen) driven by question generation (QUGen). The QUGen module generates questions in iterations, refining them from previous iterations to enhance coverage without human intervention or manually curated examples. The ISGen module analyzes data to produce multiple relevant insights in response to each question, requiring no prior training and enabling QUIS to adapt to new datasets.
Abstract:This paper considers two important problems - on the supply-side and demand-side respectively and studies both in a unified framework. On the supply side, we study the problem of energy sharing among microgrids with the goal of maximizing profit obtained from selling power while meeting customer demand. On the other hand, under shortage of power, this problem becomes one of deciding the amount of power to be bought with dynamically varying prices. On the demand side, we consider the problem of optimally scheduling the time-adjustable demand - i.e., of loads with flexible time windows in which they can be scheduled. While previous works have treated these two problems in isolation, we combine these problems together and provide for the first time in the literature, a unified Markov decision process (MDP) framework for these problems. We then apply the Q-learning algorithm, a popular model-free reinforcement learning technique, to obtain the optimal policy. Through simulations, we show that our model outperforms the traditional power sharing models.