Abstract:In this work, we consider the problem of computing optimal actions for Reinforcement Learning (RL) agents in a co-operative setting, where the objective is to optimize a common goal. However, in many real-life applications, in addition to optimizing the goal, the agents are required to satisfy certain constraints specified on their actions. Under this setting, the objective of the agents is to not only learn the actions that optimize the common objective but also meet the specified constraints. In recent times, the Actor-Critic algorithm with an attention mechanism has been successfully applied to obtain optimal actions for RL agents in multi-agent environments. In this work, we extend this algorithm to the constrained multi-agent RL setting. The idea here is that optimizing the common goal and satisfying the constraints may require different modes of attention. By incorporating different attention modes, the agents can select useful information required for optimizing the objective and satisfying the constraints separately, thereby yielding better actions. Through experiments on benchmark multi-agent environments, we show the effectiveness of our proposed algorithm.
Abstract:This paper considers two important problems - on the supply-side and demand-side respectively and studies both in a unified framework. On the supply side, we study the problem of energy sharing among microgrids with the goal of maximizing profit obtained from selling power while meeting customer demand. On the other hand, under shortage of power, this problem becomes one of deciding the amount of power to be bought with dynamically varying prices. On the demand side, we consider the problem of optimally scheduling the time-adjustable demand - i.e., of loads with flexible time windows in which they can be scheduled. While previous works have treated these two problems in isolation, we combine these problems together and provide for the first time in the literature, a unified Markov decision process (MDP) framework for these problems. We then apply the Q-learning algorithm, a popular model-free reinforcement learning technique, to obtain the optimal policy. Through simulations, we show that our model outperforms the traditional power sharing models.