Abstract:This article introduces a formation shape control algorithm, in the optimal control framework, for steering an initial population of agents to a desired configuration via employing the Gromov-Wasserstein distance. The underlying dynamical system is assumed to be a constrained linear system and the objective function is a sum of quadratic control-dependent stage cost and a Gromov-Wasserstein terminal cost. The inclusion of the Gromov-Wasserstein cost transforms the resulting optimal control problem into a well-known NP-hard problem, making it both numerically demanding and difficult to solve with high accuracy. Towards that end, we employ a recent semi-definite relaxation-driven technique to tackle the Gromov-Wasserstein distance. A numerical example is provided to illustrate our results.
Abstract:In this paper, we introduce the quantum adaptive distribution search (QuADS), a quantum continuous optimization algorithm that integrates Grover adaptive search (GAS) with the covariance matrix adaptation - evolution strategy (CMA-ES), a classical technique for continuous optimization. QuADS utilizes the quantum-based search capabilities of GAS and enhances them with the principles of CMA-ES for more efficient optimization. It employs a multivariate normal distribution for the initial state of the quantum search and repeatedly updates it throughout the optimization process. Our numerical experiments show that QuADS outperforms both GAS and CMA-ES. This is achieved through adaptive refinement of the initial state distribution rather than consistently using a uniform state, resulting in fewer oracle calls. This study presents an important step toward exploiting the potential of quantum computing for continuous optimization.