Abstract:We present Syft 0.5, a general-purpose framework that combines a core group of privacy-enhancing technologies that facilitate a universal set of structured transparency systems. This framework is demonstrated through the design and implementation of a novel privacy-preserving inference information flow where we pass homomorphically encrypted activation signals through a split neural network for inference. We show that splitting the model further up the computation chain significantly reduces the computation time of inference and the payload size of activation signals at the cost of model secrecy. We evaluate our proposed flow with respect to its provision of the core structural transparency principles.
Abstract:Differentially private learning on real-world data poses challenges for standard machine learning practice: privacy guarantees are difficult to interpret, hyperparameter tuning on private data reduces the privacy budget, and ad-hoc privacy attacks are often required to test model privacy. We introduce three tools to make differentially private machine learning more practical: (1) simple sanity checks which can be carried out in a centralized manner before training, (2) an adaptive clipping bound to reduce the effective number of tuneable privacy parameters, and (3) we show that large-batch training improves model performance.