Abstract:In medical image visualization, path tracing of volumetric medical data like CT scans produces lifelike three-dimensional visualizations. Immersive VR displays can further enhance the understanding of complex anatomies. Going beyond the diagnostic quality of traditional 2D slices, they enable interactive 3D evaluation of anatomies, supporting medical education and planning. Rendering high-quality visualizations in real-time, however, is computationally intensive and impractical for compute-constrained devices like mobile headsets. We propose a novel approach utilizing GS to create an efficient but static intermediate representation of CT scans. We introduce a layered GS representation, incrementally including different anatomical structures while minimizing overlap and extending the GS training to remove inactive Gaussians. We further compress the created model with clustering across layers. Our approach achieves interactive frame rates while preserving anatomical structures, with quality adjustable to the target hardware. Compared to standard GS, our representation retains some of the explorative qualities initially enabled by immersive path tracing. Selective activation and clipping of layers are possible at rendering time, adding a degree of interactivity to otherwise static GS models. This could enable scenarios where high computational demands would otherwise prohibit using path-traced medical volumes.
Abstract:Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost.