Abstract:Conventional super-resolution methods suffer from two drawbacks: substantial computational cost in upscaling an entire large image, and the introduction of extraneous or potentially detrimental information for downstream computer vision tasks during the refinement of the background. To solve these issues, we propose a novel transformer-based algorithm, Selective Super-Resolution (SSR), which partitions images into non-overlapping tiles, selects tiles of interest at various scales with a pyramid architecture, and exclusively reconstructs these selected tiles with deep features. Experimental results on three datasets demonstrate the efficiency and robust performance of our approach for super-resolution. Compared to the state-of-the-art methods, the FID score is reduced from 26.78 to 10.41 with 40% reduction in computation cost for the BDD100K dataset. The source code is available at https://github.com/destiny301/SSR.
Abstract:Early object detection (OD) is a crucial task for the safety of many dynamic systems. Current OD algorithms have limited success for small objects at a long distance. To improve the accuracy and efficiency of such a task, we propose a novel set of algorithms that divide the image into patches, select patches with objects at various scales, elaborate the details of a small object, and detect it as early as possible. Our approach is built upon a transformer-based network and integrates the diffusion model to improve the detection accuracy. As demonstrated on BDD100K, our algorithms enhance the mAP for small objects from 1.03 to 8.93, and reduce the data volume in computation by more than 77\%. The source code is available at \href{https://github.com/destiny301/dpr}{https://github.com/destiny301/dpr}