Abstract:To balance the quality and inference cost of a Foundation Model (FM, such as large language models (LLMs)) powered software, people often opt to train a routing model that routes requests to FMs with different sizes and capabilities. Existing routing models rely on learning the optimal routing decision from carefully curated data, require complex computations to be updated, and do not consider the potential evolution of weaker FMs. In this paper, we propose Real-time Adaptive Routing (RAR), an approach to continuously adapt FM routing decisions while using guided in-context learning to enhance the capabilities of weaker FM. The goal is to reduce reliance on stronger, more expensive FMs. We evaluate our approach on different subsets of the popular MMLU benchmark. Over time, our approach routes 50.2% fewer requests to computationally expensive models while maintaining around 90.5% of the general response quality. In addition, the guides generated from stronger models have shown intra-domain generalization and led to a better quality of responses compared to an equivalent approach with a standalone weaker FM.
Abstract:As foundation models (FMs) play an increasingly prominent role in complex software systems, such as FM-powered agentic software (i.e., Agentware), they introduce significant challenges for developers regarding observability. Unlike traditional software, agents operate autonomously, using extensive data and opaque implicit reasoning, making it difficult to observe and understand their behavior during runtime, especially when they take unexpected actions or encounter errors. In this paper, we highlight the limitations of traditional operational observability in the context of FM-powered software, and introduce cognitive observability as a new type of required observability that has emerged for such innovative systems. We then propose a novel framework that provides cognitive observability into the implicit reasoning processes of agents (a.k.a. reasoning observability), and demonstrate the effectiveness of our framework in boosting the debuggability of Agentware and, in turn, the abilities of an Agentware through a case study on AutoCodeRover, a cuttingedge Agentware for autonomous program improvement.