Abstract:Driver distraction is a well-known cause for traffic collisions worldwide. Studies have indicated that shared steering control, which actively provides haptic guidance torque on the steering wheel, effectively improves the performance of distracted drivers. Recently, adaptive shared steering control based on the physiological status of the driver has been developed, although its effect on distracted driver behavior remains unclear. To this end, a high-fidelity driving simulator experiment was conducted involving 18 participants performing double lane changes. The experimental conditions comprised two driver states: attentive and distracted. Under each condition, evaluations were performed on three types of haptic guidance: none (manual), fixed authority, and adaptive authority based on feedback from the forearm surface electromyography of the driver. Evaluation results indicated that, for both attentive and distracted drivers, haptic guidance with adaptive authority yielded lower driver workload and reduced lane departure risk than manual driving and fixed authority. Moreover, there was a tendency for distracted drivers to reduce grip strength on the steering wheel to follow the haptic guidance with fixed authority, resulting in a relatively shorter double lane change duration.
Abstract:Lane change is a very demanding driving task and number of traffic accidents are induced by mistaken maneuvers. An automated lane change system has the potential to reduce driver workload and to improve driving safety. One challenge is how to improve driver acceptance on the automated system. From the viewpoint of human factors, an automated system with different styles would improve user acceptance as the drivers can adapt the style to different driving situations. This paper proposes a method to design different lane change styles in automated driving by analysis and modeling of truck driver behavior. A truck driving simulator experiment with 12 participants was conducted to identify the driver model parameters and three lane change styles were classified as the aggressive, medium, and conservative ones. The proposed automated lane change system was evaluated by another truck driving simulator experiment with the same 12 participants. Moreover, the effect of different driving styles on driver experience and acceptance was evaluated. The evaluation results demonstrate that the different lane change styles could be distinguished by the drivers; meanwhile, the three styles were overall evaluated as acceptable on safety issues and reliable by the human drivers. This study provides insight into designing the automated driving system with different driving styles and the findings can be applied to commercial automated trucks.
Abstract:Haptic guidance in a shared steering assistance system has drawn significant attention in intelligent vehicle fields, owing to its mutual communication ability for vehicle control. By exerting continuous torque on the steering wheel, both the driver and support system can share lateral control of the vehicle. However, current haptic guidance steering systems demonstrate some deficiencies in assisting lane changing. This study explored a new steering interaction method, including the design and evaluation of an intention-based haptic shared steering system. Such an intention-based method can support both lane keeping and lane changing assistance, by detecting a driver lane change intention. By using a deep learning-based method to model a driver decision timing regarding lane crossing, an adaptive gain control method was proposed for realizing a steering control system. An intention consistency method was proposed to detect whether the driver and the system were acting towards the same target trajectories and to accurately capture the driver intention. A driving simulator experiment was conducted to test the system performance. Participants were required to perform six trials with assistive methods and one trial without assistance. The results demonstrated that the supporting system decreased the lane departure risk in the lane keeping tasks and could support a fast and stable lane changing maneuver.
Abstract:In this article, the authors present a novel method to learn the personalized tactic of discretionary lane-change initiation for fully autonomous vehicles through human-computer interactions. Instead of learning from human-driving demonstrations, a reinforcement learning technique is employed to learn how to initiate lane changes from traffic context, the action of a self-driving vehicle, and in-vehicle user feedback. The proposed offline algorithm rewards the action-selection strategy when the user gives positive feedback and penalizes it when negative feedback. Also, a multi-dimensional driving scenario is considered to represent a more realistic lane-change trade-off. The results show that the lane-change initiation model obtained by this method can reproduce the personal lane-change tactic, and the performance of the customized models (average accuracy 86.1%) is much better than that of the non-customized models (average accuracy 75.7%). This method allows continuous improvement of customization for users during fully autonomous driving even without human-driving experience, which will significantly enhance the user acceptance of high-level autonomy of self-driving vehicles.
Abstract:For the optimum design of a driver-automation shared control system, an understanding of driver behavior based on measurements and modeling is crucial early in the development process. This paper presents a driver model through a weighting process of visual guidance from the road ahead and haptic guidance from a steering system for a lane-following task. The proposed weighting process describes the interaction of a driver with the haptic guidance steering and the driver reliance on it. A driving simulator experiment is conducted to identify the model parameters for driving manually and with haptic guidance. The proposed driver model matched the driver input torque with a satisfactory goodness of fit among fourteen participants after considering the individual differences. The validation results reveal that the simulated trajectory effectively followed the driving course by matching the measured trajectory, thereby indicating that the proposed driver model is capable of predicting driver behavior during haptic guidance. Furthermore, the effect of different degrees of driver reliance on driving performance is evaluated considering various driver states and with system failure via numerical analysis. The model evaluation results reveal the potential of the proposed driver model to be applied in the design and evaluation of a haptic guidance system.
Abstract:Shared steering control has been developed to reduce driver workload while keeping the driver in the control loop. A driver could integrate visual sensory information from the road ahead and haptic sensory information from the steering wheel to achieve better driving performance. Previous studies suggest that, compared with adaptive automation authority, fixed automation authority is not always appropriate with respect to human factors. This paper focuses on designing an adaptive shared steering control system via sEMG (surface electromyography) measurement from the forearm of the driver, and evaluates the effect of the system on driver behavior during a double lane change task. The shared steering control was achieved through a haptic guidance system which provided active assistance torque on the steering wheel. Ten subjects participated in a high-fidelity driving simulator experiment. Two types of adaptive algorithms were investigated: haptic guidance decreases when driver grip strength increases (HG-Decrease), and haptic guidance increases when driver grip strength increases (HG-Increase). These two algorithms were compared to manual driving and two levels of fixed authority haptic guidance, for a total of five experimental conditions. Evaluation of the driving systems was based on two sets of dependent variables: objective measures of driver behavior and subjective measures of driver workload. The results indicate that the adaptive authority of HG-Decrease yielded lower driver workload and reduced the lane departure risk compared to manual driving and fixed authority haptic guidance.