Abstract:We introduce a lightweight LLM-based framework designed to enhance the autonomy and robustness of domestic robots, targeting onboard embodied intelligence. By addressing challenges such as kinematic constraints and dynamic environments, our approach reduces reliance on large-scale data and incorporates a robot-agnostic pipeline. Our framework, InteLiPlan, ensures that the LLM model's decision-making capabilities are effectively aligned with robotic functions, enhancing operational robustness and adaptability, while our human-in-the-loop mechanism allows for real-time human intervention in the case where the system fails. We evaluate our method in both simulation and on the real Toyota HSR robot. The results show that our method achieves a 93% success rate in the fetch me task completion with system failure recovery, outperforming the baseline method in a domestic environment. InteLiPlan achieves comparable performance to the state-of-the-art large-scale LLM-based robotics planner, while guaranteeing real-time onboard computing with embodied intelligence.
Abstract:This paper presents an optimization-based solution to task and motion planning (TAMP) on mobile manipulators. Logic-geometric programming (LGP) has shown promising capabilities for optimally dealing with hybrid TAMP problems that involve abstract and geometric constraints. However, LGP does not scale well to high-dimensional systems (e.g. mobile manipulators) and can suffer from obstacle avoidance issues. In this work, we extend LGP with a sampling-based reachability graph to enable solving optimal TAMP on high-DoF mobile manipulators. The proposed reachability graph can incorporate environmental information (obstacles) to provide the planner with sufficient geometric constraints. This reachability-aware heuristic efficiently prunes infeasible sequences of actions in the continuous domain, hence, it reduces replanning by securing feasibility at the final full trajectory optimization. Our framework proves to be time-efficient in computing optimal and collision-free solutions, while outperforming the current state of the art on metrics of success rate, planning time, path length and number of steps. We validate our framework on the physical Toyota HSR robot and report comparisons on a series of mobile manipulation tasks of increasing difficulty.