Abstract:Video understanding of robot-assisted surgery (RAS) videos is an active research area. Modeling the gestures and skill level of surgeons presents an interesting problem. The insights drawn may be applied in effective skill acquisition, objective skill assessment, real-time feedback, and human-robot collaborative surgeries. We propose a solution to the tool detection and localization open problem in RAS video understanding, using a strictly computer vision approach and the recent advances of deep learning. We propose an architecture using multimodal convolutional neural networks for fast detection and localization of tools in RAS videos. To our knowledge, this approach will be the first to incorporate deep neural networks for tool detection and localization in RAS videos. Our architecture applies a Region Proposal Network (RPN), and a multi-modal two stream convolutional network for object detection, to jointly predict objectness and localization on a fusion of image and temporal motion cues. Our results with an Average Precision (AP) of 91% and a mean computation time of 0.1 seconds per test frame detection indicate that our study is superior to conventionally used methods for medical imaging while also emphasizing the benefits of using RPN for precision and efficiency. We also introduce a new dataset, ATLAS Dione, for RAS video understanding. Our dataset provides video data of ten surgeons from Roswell Park Cancer Institute (RPCI) (Buffalo, NY) performing six different surgical tasks on the daVinci Surgical System (dVSS R ) with annotations of robotic tools per frame.
Abstract:We propose a novel multi-modal and multi-task architecture for simultaneous low level gesture and surgical task classification in Robot Assisted Surgery (RAS) videos.Our end-to-end architecture is based on the principles of a long short-term memory network (LSTM) that jointly learns temporal dynamics on rich representations of visual and motion features, while simultaneously classifying activities of low-level gestures and surgical tasks. Our experimental results show that our approach is superior compared to an ar- chitecture that classifies the gestures and surgical tasks separately on visual cues and motion cues respectively. We train our model on a fixed random set of 1200 gesture video segments and use the rest 422 for testing. This results in around 42,000 gesture frames sampled for training and 14,500 for testing. For a 6 split experimentation, while the conventional approach reaches an Average Precision (AP) of only 29% (29.13%), our architecture reaches an AP of 51% (50.83%) for 3 tasks and 14 possible gesture labels, resulting in an improvement of 22% (21.7%). Our architecture learns temporal dynamics on rich representations of visual and motion features that compliment each other for classification of low-level gestures and surgical tasks. Its multi-task learning nature makes use of learned joint re- lationships and combinations of shared and task-specific representations. While benchmark studies focus on recognizing gestures that take place under specific tasks, we focus on recognizing common gestures that reoccur across different tasks and settings and significantly perform better compared to conventional architectures.