Abstract:This paper addresses an ill-posed problem of recovering a color image from its compressively sensed measurement data. Differently from the typical 1D vector-based approach of the state-of-the-art methods, we exploit the nonlocal similarities inherently existing in images by treating each patch of a color image as a 3D tensor consisting of not only horizontal and vertical but also spectral dimensions. A group of nonlocal similar patches form a 4D tensor for which a nonlocal higher order dictionary is learned via higher order singular value decomposition. The multiple sub-dictionaries contained in the higher order dictionary decorrelate the group in each corresponding dimension, thus help the detail of color images to be reconstructed better. Furthermore, we promote sparsity of the final solution using a sparsity regularization based on a weight tensor. It can distinguish those coefficients of the sparse representation generated by the higher order dictionary which are expected to have large magnitude from the others in the optimization. Accordingly, in the iterative solution, it acts like a weighting process which is designed by approximating the minimum mean squared error filter for more faithful recovery. Experimental results confirm improvement by the proposed method over the state-of-the-art ones.
Abstract:Although block compressive sensing (BCS) makes it tractable to sense large-sized images and video, its recovery performance has yet to be significantly improved because its recovered images or video usually suffer from blurred edges, loss of details, and high-frequency oscillatory artifacts, especially at a low subrate. This paper addresses these problems by designing a modified total variation technique that employs multi-block gradient processing, a denoised Lagrangian multiplier, and patch-based sparse representation. In the case of video, the proposed recovery method is able to exploit both spatial and temporal similarities. Simulation results confirm the improved performance of the proposed method for compressive sensing of images and video in terms of both objective and subjective qualities.
Abstract:Total variation has proved its effectiveness in solving inverse problems for compressive sensing. Besides, the nonlocal means filter used as regularization preserves texture better for recovered images, but it is quite complex to implement. In this paper, based on existence of both noise and image information in the Lagrangian multiplier, we propose a simple method in term of implementation called nonlocal Lagrangian multiplier (NLLM) in order to reduce noise and boost useful image information. Experimental results show that the proposed NLLM is superior both in subjective and objective qualities of recovered image over other recovery algorithms.