Abstract:This research addresses a critical challenge in the field of generative models, particularly in the generation and evaluation of synthetic images. Given the inherent complexity of generative models and the absence of a standardized procedure for their comparison, our study introduces a pioneering algorithm to objectively assess the realism of synthetic images. This approach significantly enhances the evaluation methodology by refining the Fr\'echet Inception Distance (FID) score, allowing for a more precise and subjective assessment of image quality. Our algorithm is particularly tailored to address the challenges in generating and evaluating realistic images of Arabic handwritten digits, a task that has traditionally been near-impossible due to the subjective nature of realism in image generation. By providing a systematic and objective framework, our method not only enables the comparison of different generative models but also paves the way for improvements in their design and output. This breakthrough in evaluation and comparison is crucial for advancing the field of OCR, especially for scripts that present unique complexities, and sets a new standard in the generation and assessment of high-quality synthetic images.
Abstract:In recent years, federated learning (FL) has emerged as a promising technique for training machine learning models in a decentralized manner while also preserving data privacy. The non-independent and identically distributed (non-i.i.d.) nature of client data, coupled with constraints on client or edge devices, presents significant challenges in FL. Furthermore, learning across a high number of communication rounds can be risky and potentially unsafe for model exploitation. Traditional FL approaches may suffer from these challenges. Therefore, we introduce FedSiKD, which incorporates knowledge distillation (KD) within a similarity-based federated learning framework. As clients join the system, they securely share relevant statistics about their data distribution, promoting intra-cluster homogeneity. This enhances optimization efficiency and accelerates the learning process, effectively transferring knowledge between teacher and student models and addressing device constraints. FedSiKD outperforms state-of-the-art algorithms by achieving higher accuracy, exceeding by 25\% and 18\% for highly skewed data at $\alpha = {0.1,0.5}$ on the HAR and MNIST datasets, respectively. Its faster convergence is illustrated by a 17\% and 20\% increase in accuracy within the first five rounds on the HAR and MNIST datasets, respectively, highlighting its early-stage learning proficiency. Code is publicly available and hosted on GitHub (https://github.com/SimuEnv/FedSiKD)