Abstract:In this work, we propose an extreme compression technique for Large Multimodal Models (LMMs). While previous studies have explored quantization as an efficient post-training compression method for Large Language Models (LLMs), low-bit compression for multimodal models remains under-explored. The redundant nature of inputs in multimodal models results in a highly sparse attention matrix. We theoretically and experimentally demonstrate that the attention matrix's sparsity bounds the compression error of the Query and Key weight matrices. Based on this, we introduce CASP, a model compression technique for LMMs. Our approach performs a data-aware low-rank decomposition on the Query and Key weight matrix, followed by quantization across all layers based on an optimal bit allocation process. CASP is compatible with any quantization technique and enhances state-of-the-art 2-bit quantization methods (AQLM and QuIP#) by an average of 21% on image- and video-language benchmarks.
Abstract:The aim of this paper is to formalize a new continual semi-supervised learning (CSSL) paradigm, proposed to the attention of the machine learning community via the IJCAI 2021 International Workshop on Continual Semi-Supervised Learning (CSSL-IJCAI), with the aim of raising field awareness about this problem and mobilizing its effort in this direction. After a formal definition of continual semi-supervised learning and the appropriate training and testing protocols, the paper introduces two new benchmarks specifically designed to assess CSSL on two important computer vision tasks: activity recognition and crowd counting. We describe the Continual Activity Recognition (CAR) and Continual Crowd Counting (CCC) challenges built upon those benchmarks, the baseline models proposed for the challenges, and describe a simple CSSL baseline which consists in applying batch self-training in temporal sessions, for a limited number of rounds. The results show that learning from unlabelled data streams is extremely challenging, and stimulate the search for methods that can encode the dynamics of the data stream.