Abstract:Model fusion research aims to aggregate the knowledge of multiple models to enhance performance by combining their weights. In this work, we study the inverse, investigating whether and how can model fusion interfere and reduce unwanted knowledge. We delve into the effects of model fusion on the evolution of learned shortcuts, social biases, and memorization capabilities in fine-tuned language models. Through several experiments covering text classification and generation tasks, our analysis highlights that shared knowledge among models is usually enhanced during model fusion, while unshared knowledge is usually lost or forgotten. Based on this observation, we demonstrate the potential of model fusion as a debiasing tool and showcase its efficacy in addressing privacy concerns associated with language models.
Abstract:Understanding the internal reasoning behind the predictions of machine learning systems is increasingly vital, given their rising adoption and acceptance. While previous approaches, such as LIME, generate algorithmic explanations by attributing importance to input features for individual examples, recent research indicates that practitioners prefer examining language explanations that explain sub-groups of examples. In this paper, we introduce MaNtLE, a model-agnostic natural language explainer that analyzes multiple classifier predictions and generates faithful natural language explanations of classifier rationale for structured classification tasks. MaNtLE uses multi-task training on thousands of synthetic classification tasks to generate faithful explanations. Simulated user studies indicate that, on average, MaNtLE-generated explanations are at least 11% more faithful compared to LIME and Anchors explanations across three tasks. Human evaluations demonstrate that users can better predict model behavior using explanations from MaNtLE compared to other techniques
Abstract:Most evaluations of attribution methods focus on the English language. In this work, we present a multilingual approach for evaluating attribution methods for the Natural Language Inference (NLI) task in terms of plausibility and faithfulness properties. First, we introduce a novel cross-lingual strategy to measure faithfulness based on word alignments, which eliminates the potential downsides of erasure-based evaluations. We then perform a comprehensive evaluation of attribution methods, considering different output mechanisms and aggregation methods. Finally, we augment the XNLI dataset with highlight-based explanations, providing a multilingual NLI dataset with highlights, which may support future exNLP studies. Our results show that attribution methods performing best for plausibility and faithfulness are different.